Unverified Commit 385a44f8 authored by YosuaMichael's avatar YosuaMichael Committed by GitHub
Browse files

Remove publication_year and interpolation meta (#5848)



* Remove publication_year and interpolation meta

* Add type to _COMMON_META and _COMMON_SWAG_META to prevent error from mypy check

* Remove test to check interpolation and publication_year meta
Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
parent 7d83be5e
...@@ -7,7 +7,7 @@ from torch.ao.quantization import QuantStub, DeQuantStub ...@@ -7,7 +7,7 @@ from torch.ao.quantization import QuantStub, DeQuantStub
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNetV2, MobileNet_V2_Weights from torchvision.models.mobilenetv2 import InvertedResidual, MobileNetV2, MobileNet_V2_Weights
from ...ops.misc import Conv2dNormActivation from ...ops.misc import Conv2dNormActivation
from ...transforms._presets import ImageClassification, InterpolationMode from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param from .._utils import handle_legacy_interface, _ovewrite_named_param
...@@ -71,12 +71,10 @@ class MobileNet_V2_QuantizedWeights(WeightsEnum): ...@@ -71,12 +71,10 @@ class MobileNet_V2_QuantizedWeights(WeightsEnum):
meta={ meta={
"task": "image_classification", "task": "image_classification",
"architecture": "MobileNetV2", "architecture": "MobileNetV2",
"publication_year": 2018,
"num_params": 3504872, "num_params": 3504872,
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"backend": "qnnpack", "backend": "qnnpack",
"quantization": "Quantization Aware Training", "quantization": "Quantization Aware Training",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
......
...@@ -6,7 +6,7 @@ from torch import nn, Tensor ...@@ -6,7 +6,7 @@ from torch import nn, Tensor
from torch.ao.quantization import QuantStub, DeQuantStub from torch.ao.quantization import QuantStub, DeQuantStub
from ...ops.misc import Conv2dNormActivation, SqueezeExcitation from ...ops.misc import Conv2dNormActivation, SqueezeExcitation
from ...transforms._presets import ImageClassification, InterpolationMode from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param from .._utils import handle_legacy_interface, _ovewrite_named_param
...@@ -161,12 +161,10 @@ class MobileNet_V3_Large_QuantizedWeights(WeightsEnum): ...@@ -161,12 +161,10 @@ class MobileNet_V3_Large_QuantizedWeights(WeightsEnum):
meta={ meta={
"task": "image_classification", "task": "image_classification",
"architecture": "MobileNetV3", "architecture": "MobileNetV3",
"publication_year": 2019,
"num_params": 5483032, "num_params": 5483032,
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"backend": "qnnpack", "backend": "qnnpack",
"quantization": "Quantization Aware Training", "quantization": "Quantization Aware Training",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3",
......
...@@ -13,7 +13,7 @@ from torchvision.models.resnet import ( ...@@ -13,7 +13,7 @@ from torchvision.models.resnet import (
ResNeXt101_32X8D_Weights, ResNeXt101_32X8D_Weights,
) )
from ...transforms._presets import ImageClassification, InterpolationMode from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param from .._utils import handle_legacy_interface, _ovewrite_named_param
...@@ -151,7 +151,6 @@ _COMMON_META = { ...@@ -151,7 +151,6 @@ _COMMON_META = {
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"backend": "fbgemm", "backend": "fbgemm",
"quantization": "Post Training Quantization", "quantization": "Post Training Quantization",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
...@@ -165,7 +164,6 @@ class ResNet18_QuantizedWeights(WeightsEnum): ...@@ -165,7 +164,6 @@ class ResNet18_QuantizedWeights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 11689512, "num_params": 11689512,
"unquantized": ResNet18_Weights.IMAGENET1K_V1, "unquantized": ResNet18_Weights.IMAGENET1K_V1,
"acc@1": 69.494, "acc@1": 69.494,
...@@ -182,7 +180,6 @@ class ResNet50_QuantizedWeights(WeightsEnum): ...@@ -182,7 +180,6 @@ class ResNet50_QuantizedWeights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 25557032, "num_params": 25557032,
"unquantized": ResNet50_Weights.IMAGENET1K_V1, "unquantized": ResNet50_Weights.IMAGENET1K_V1,
"acc@1": 75.920, "acc@1": 75.920,
...@@ -195,7 +192,6 @@ class ResNet50_QuantizedWeights(WeightsEnum): ...@@ -195,7 +192,6 @@ class ResNet50_QuantizedWeights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 25557032, "num_params": 25557032,
"unquantized": ResNet50_Weights.IMAGENET1K_V2, "unquantized": ResNet50_Weights.IMAGENET1K_V2,
"acc@1": 80.282, "acc@1": 80.282,
...@@ -212,7 +208,6 @@ class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum): ...@@ -212,7 +208,6 @@ class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNeXt", "architecture": "ResNeXt",
"publication_year": 2016,
"num_params": 88791336, "num_params": 88791336,
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1, "unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1,
"acc@1": 78.986, "acc@1": 78.986,
...@@ -225,7 +220,6 @@ class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum): ...@@ -225,7 +220,6 @@ class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNeXt", "architecture": "ResNeXt",
"publication_year": 2016,
"num_params": 88791336, "num_params": 88791336,
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2, "unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2,
"acc@1": 82.574, "acc@1": 82.574,
......
...@@ -6,7 +6,7 @@ import torch.nn as nn ...@@ -6,7 +6,7 @@ import torch.nn as nn
from torch import Tensor from torch import Tensor
from torchvision.models import shufflenetv2 from torchvision.models import shufflenetv2
from ...transforms._presets import ImageClassification, InterpolationMode from ...transforms._presets import ImageClassification
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param from .._utils import handle_legacy_interface, _ovewrite_named_param
...@@ -104,11 +104,9 @@ def _shufflenetv2( ...@@ -104,11 +104,9 @@ def _shufflenetv2(
_COMMON_META = { _COMMON_META = {
"task": "image_classification", "task": "image_classification",
"architecture": "ShuffleNetV2", "architecture": "ShuffleNetV2",
"publication_year": 2018,
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"backend": "fbgemm", "backend": "fbgemm",
"quantization": "Post Training Quantization", "quantization": "Post Training Quantization",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
......
...@@ -405,20 +405,16 @@ def _regnet( ...@@ -405,20 +405,16 @@ def _regnet(
_COMMON_META = { _COMMON_META = {
"task": "image_classification", "task": "image_classification",
"architecture": "RegNet", "architecture": "RegNet",
"publication_year": 2020,
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
} }
_COMMON_SWAG_META = { _COMMON_SWAG_META = {
**_COMMON_META, **_COMMON_META,
"publication_year": 2022,
"size": (384, 384), "size": (384, 384),
"recipe": "https://github.com/facebookresearch/SWAG", "recipe": "https://github.com/facebookresearch/SWAG",
"license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE", "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE",
"interpolation": InterpolationMode.BICUBIC,
} }
......
...@@ -5,7 +5,7 @@ import torch ...@@ -5,7 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from torch import Tensor from torch import Tensor
from ..transforms._presets import ImageClassification, InterpolationMode from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES from ._meta import _IMAGENET_CATEGORIES
...@@ -306,7 +306,6 @@ _COMMON_META = { ...@@ -306,7 +306,6 @@ _COMMON_META = {
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
} }
...@@ -317,7 +316,6 @@ class ResNet18_Weights(WeightsEnum): ...@@ -317,7 +316,6 @@ class ResNet18_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 11689512, "num_params": 11689512,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"acc@1": 69.758, "acc@1": 69.758,
...@@ -334,7 +332,6 @@ class ResNet34_Weights(WeightsEnum): ...@@ -334,7 +332,6 @@ class ResNet34_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 21797672, "num_params": 21797672,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"acc@1": 73.314, "acc@1": 73.314,
...@@ -351,7 +348,6 @@ class ResNet50_Weights(WeightsEnum): ...@@ -351,7 +348,6 @@ class ResNet50_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 25557032, "num_params": 25557032,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"acc@1": 76.130, "acc@1": 76.130,
...@@ -364,7 +360,6 @@ class ResNet50_Weights(WeightsEnum): ...@@ -364,7 +360,6 @@ class ResNet50_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 25557032, "num_params": 25557032,
"recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621", "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
"acc@1": 80.858, "acc@1": 80.858,
...@@ -381,7 +376,6 @@ class ResNet101_Weights(WeightsEnum): ...@@ -381,7 +376,6 @@ class ResNet101_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 44549160, "num_params": 44549160,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"acc@1": 77.374, "acc@1": 77.374,
...@@ -394,7 +388,6 @@ class ResNet101_Weights(WeightsEnum): ...@@ -394,7 +388,6 @@ class ResNet101_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 44549160, "num_params": 44549160,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"acc@1": 81.886, "acc@1": 81.886,
...@@ -411,7 +404,6 @@ class ResNet152_Weights(WeightsEnum): ...@@ -411,7 +404,6 @@ class ResNet152_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 60192808, "num_params": 60192808,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"acc@1": 78.312, "acc@1": 78.312,
...@@ -424,7 +416,6 @@ class ResNet152_Weights(WeightsEnum): ...@@ -424,7 +416,6 @@ class ResNet152_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNet", "architecture": "ResNet",
"publication_year": 2015,
"num_params": 60192808, "num_params": 60192808,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"acc@1": 82.284, "acc@1": 82.284,
...@@ -441,7 +432,6 @@ class ResNeXt50_32X4D_Weights(WeightsEnum): ...@@ -441,7 +432,6 @@ class ResNeXt50_32X4D_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNeXt", "architecture": "ResNeXt",
"publication_year": 2016,
"num_params": 25028904, "num_params": 25028904,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
"acc@1": 77.618, "acc@1": 77.618,
...@@ -454,7 +444,6 @@ class ResNeXt50_32X4D_Weights(WeightsEnum): ...@@ -454,7 +444,6 @@ class ResNeXt50_32X4D_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNeXt", "architecture": "ResNeXt",
"publication_year": 2016,
"num_params": 25028904, "num_params": 25028904,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"acc@1": 81.198, "acc@1": 81.198,
...@@ -471,7 +460,6 @@ class ResNeXt101_32X8D_Weights(WeightsEnum): ...@@ -471,7 +460,6 @@ class ResNeXt101_32X8D_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNeXt", "architecture": "ResNeXt",
"publication_year": 2016,
"num_params": 88791336, "num_params": 88791336,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
"acc@1": 79.312, "acc@1": 79.312,
...@@ -484,7 +472,6 @@ class ResNeXt101_32X8D_Weights(WeightsEnum): ...@@ -484,7 +472,6 @@ class ResNeXt101_32X8D_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "ResNeXt", "architecture": "ResNeXt",
"publication_year": 2016,
"num_params": 88791336, "num_params": 88791336,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
"acc@1": 82.834, "acc@1": 82.834,
...@@ -501,7 +488,6 @@ class Wide_ResNet50_2_Weights(WeightsEnum): ...@@ -501,7 +488,6 @@ class Wide_ResNet50_2_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "WideResNet", "architecture": "WideResNet",
"publication_year": 2016,
"num_params": 68883240, "num_params": 68883240,
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
"acc@1": 78.468, "acc@1": 78.468,
...@@ -514,7 +500,6 @@ class Wide_ResNet50_2_Weights(WeightsEnum): ...@@ -514,7 +500,6 @@ class Wide_ResNet50_2_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "WideResNet", "architecture": "WideResNet",
"publication_year": 2016,
"num_params": 68883240, "num_params": 68883240,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
"acc@1": 81.602, "acc@1": 81.602,
...@@ -531,7 +516,6 @@ class Wide_ResNet101_2_Weights(WeightsEnum): ...@@ -531,7 +516,6 @@ class Wide_ResNet101_2_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "WideResNet", "architecture": "WideResNet",
"publication_year": 2016,
"num_params": 126886696, "num_params": 126886696,
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
"acc@1": 78.848, "acc@1": 78.848,
...@@ -544,7 +528,6 @@ class Wide_ResNet101_2_Weights(WeightsEnum): ...@@ -544,7 +528,6 @@ class Wide_ResNet101_2_Weights(WeightsEnum):
meta={ meta={
**_COMMON_META, **_COMMON_META,
"architecture": "WideResNet", "architecture": "WideResNet",
"publication_year": 2016,
"num_params": 126886696, "num_params": 126886696,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"acc@1": 82.510, "acc@1": 82.510,
......
...@@ -5,7 +5,7 @@ import torch ...@@ -5,7 +5,7 @@ import torch
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
from ...transforms._presets import SemanticSegmentation, InterpolationMode from ...transforms._presets import SemanticSegmentation
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _VOC_CATEGORIES from .._meta import _VOC_CATEGORIES
from .._utils import IntermediateLayerGetter, handle_legacy_interface, _ovewrite_value_param from .._utils import IntermediateLayerGetter, handle_legacy_interface, _ovewrite_value_param
...@@ -131,9 +131,7 @@ def _deeplabv3_resnet( ...@@ -131,9 +131,7 @@ def _deeplabv3_resnet(
_COMMON_META = { _COMMON_META = {
"task": "image_semantic_segmentation", "task": "image_semantic_segmentation",
"architecture": "DeepLabV3", "architecture": "DeepLabV3",
"publication_year": 2017,
"categories": _VOC_CATEGORIES, "categories": _VOC_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
} }
......
...@@ -3,7 +3,7 @@ from typing import Any, Optional ...@@ -3,7 +3,7 @@ from typing import Any, Optional
from torch import nn from torch import nn
from ...transforms._presets import SemanticSegmentation, InterpolationMode from ...transforms._presets import SemanticSegmentation
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _VOC_CATEGORIES from .._meta import _VOC_CATEGORIES
from .._utils import IntermediateLayerGetter, handle_legacy_interface, _ovewrite_value_param from .._utils import IntermediateLayerGetter, handle_legacy_interface, _ovewrite_value_param
...@@ -50,9 +50,7 @@ class FCNHead(nn.Sequential): ...@@ -50,9 +50,7 @@ class FCNHead(nn.Sequential):
_COMMON_META = { _COMMON_META = {
"task": "image_semantic_segmentation", "task": "image_semantic_segmentation",
"architecture": "FCN", "architecture": "FCN",
"publication_year": 2014,
"categories": _VOC_CATEGORIES, "categories": _VOC_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
} }
......
...@@ -5,7 +5,7 @@ from typing import Any, Dict, Optional ...@@ -5,7 +5,7 @@ from typing import Any, Dict, Optional
from torch import nn, Tensor from torch import nn, Tensor
from torch.nn import functional as F from torch.nn import functional as F
from ...transforms._presets import SemanticSegmentation, InterpolationMode from ...transforms._presets import SemanticSegmentation
from ...utils import _log_api_usage_once from ...utils import _log_api_usage_once
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _VOC_CATEGORIES from .._meta import _VOC_CATEGORIES
...@@ -100,10 +100,8 @@ class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum): ...@@ -100,10 +100,8 @@ class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum):
meta={ meta={
"task": "image_semantic_segmentation", "task": "image_semantic_segmentation",
"architecture": "LRASPP", "architecture": "LRASPP",
"publication_year": 2019,
"num_params": 3221538, "num_params": 3221538,
"categories": _VOC_CATEGORIES, "categories": _VOC_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large", "recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large",
"mIoU": 57.9, "mIoU": 57.9,
"acc": 91.2, "acc": 91.2,
......
...@@ -5,7 +5,7 @@ import torch ...@@ -5,7 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from torch import Tensor from torch import Tensor
from ..transforms._presets import ImageClassification, InterpolationMode from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES from ._meta import _IMAGENET_CATEGORIES
...@@ -186,11 +186,9 @@ def _shufflenetv2( ...@@ -186,11 +186,9 @@ def _shufflenetv2(
_COMMON_META = { _COMMON_META = {
"task": "image_classification", "task": "image_classification",
"architecture": "ShuffleNetV2", "architecture": "ShuffleNetV2",
"publication_year": 2018,
"size": (224, 224), "size": (224, 224),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/barrh/Shufflenet-v2-Pytorch/tree/v0.1.0", "recipe": "https://github.com/barrh/Shufflenet-v2-Pytorch/tree/v0.1.0",
} }
......
...@@ -5,7 +5,7 @@ import torch ...@@ -5,7 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.init as init import torch.nn.init as init
from ..transforms._presets import ImageClassification, InterpolationMode from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES from ._meta import _IMAGENET_CATEGORIES
...@@ -117,10 +117,8 @@ def _squeezenet( ...@@ -117,10 +117,8 @@ def _squeezenet(
_COMMON_META = { _COMMON_META = {
"task": "image_classification", "task": "image_classification",
"architecture": "SqueezeNet", "architecture": "SqueezeNet",
"publication_year": 2016,
"size": (224, 224), "size": (224, 224),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/pull/49#issuecomment-277560717", "recipe": "https://github.com/pytorch/vision/pull/49#issuecomment-277560717",
} }
......
...@@ -4,7 +4,7 @@ from typing import Union, List, Dict, Any, Optional, cast ...@@ -4,7 +4,7 @@ from typing import Union, List, Dict, Any, Optional, cast
import torch import torch
import torch.nn as nn import torch.nn as nn
from ..transforms._presets import ImageClassification, InterpolationMode from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once from ..utils import _log_api_usage_once
from ._api import WeightsEnum, Weights from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES from ._meta import _IMAGENET_CATEGORIES
...@@ -109,11 +109,9 @@ def _vgg(cfg: str, batch_norm: bool, weights: Optional[WeightsEnum], progress: b ...@@ -109,11 +109,9 @@ def _vgg(cfg: str, batch_norm: bool, weights: Optional[WeightsEnum], progress: b
_COMMON_META = { _COMMON_META = {
"task": "image_classification", "task": "image_classification",
"architecture": "VGG", "architecture": "VGG",
"publication_year": 2014,
"size": (224, 224), "size": (224, 224),
"min_size": (32, 32), "min_size": (32, 32),
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg",
} }
......
...@@ -4,7 +4,7 @@ from typing import Tuple, Optional, Callable, List, Sequence, Type, Any, Union ...@@ -4,7 +4,7 @@ from typing import Tuple, Optional, Callable, List, Sequence, Type, Any, Union
import torch.nn as nn import torch.nn as nn
from torch import Tensor from torch import Tensor
from ...transforms._presets import VideoClassification, InterpolationMode from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once from ...utils import _log_api_usage_once
from .._api import WeightsEnum, Weights from .._api import WeightsEnum, Weights
from .._meta import _KINETICS400_CATEGORIES from .._meta import _KINETICS400_CATEGORIES
...@@ -310,11 +310,9 @@ def _video_resnet( ...@@ -310,11 +310,9 @@ def _video_resnet(
_COMMON_META = { _COMMON_META = {
"task": "video_classification", "task": "video_classification",
"publication_year": 2017,
"size": (112, 112), "size": (112, 112),
"min_size": (1, 1), "min_size": (1, 1),
"categories": _KINETICS400_CATEGORIES, "categories": _KINETICS400_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
"recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification", "recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification",
} }
......
import math import math
from collections import OrderedDict from collections import OrderedDict
from functools import partial from functools import partial
from typing import Any, Callable, List, NamedTuple, Optional, Sequence from typing import Any, Callable, List, NamedTuple, Optional, Sequence, Dict
import torch import torch
import torch.nn as nn import torch.nn as nn
...@@ -318,20 +318,16 @@ def _vision_transformer( ...@@ -318,20 +318,16 @@ def _vision_transformer(
return model return model
_COMMON_META = { _COMMON_META: Dict[str, Any] = {
"task": "image_classification", "task": "image_classification",
"architecture": "ViT", "architecture": "ViT",
"publication_year": 2020,
"categories": _IMAGENET_CATEGORIES, "categories": _IMAGENET_CATEGORIES,
"interpolation": InterpolationMode.BILINEAR,
} }
_COMMON_SWAG_META = { _COMMON_SWAG_META: Dict[str, Any] = {
**_COMMON_META, **_COMMON_META,
"publication_year": 2022,
"recipe": "https://github.com/facebookresearch/SWAG", "recipe": "https://github.com/facebookresearch/SWAG",
"license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE", "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE",
"interpolation": InterpolationMode.BICUBIC,
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment