train.py 8.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn
import torchvision

from coco_utils import get_coco
import transforms as T
import utils


15
def get_dataset(dir_path, name, image_set, transform):
16
17
18
    def sbd(*args, **kwargs):
        return torchvision.datasets.SBDataset(*args, mode='segmentation', **kwargs)
    paths = {
19
20
21
        "voc": (dir_path, torchvision.datasets.VOCSegmentation, 21),
        "voc_aug": (dir_path, sbd, 21),
        "coco": (dir_path, get_coco, 21)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    }
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


def get_transform(train):
    base_size = 520
    crop_size = 480

    min_size = int((0.5 if train else 1.0) * base_size)
    max_size = int((2.0 if train else 1.0) * base_size)
    transforms = []
    transforms.append(T.RandomResize(min_size, max_size))
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
        transforms.append(T.RandomCrop(crop_size))
    transforms.append(T.ToTensor())
    transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]))

    return T.Compose(transforms)


def criterion(inputs, target):
    losses = {}
    for name, x in inputs.items():
        losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)

    if len(losses) == 1:
        return losses['out']

    return losses['out'] + 0.5 * losses['aux']


def evaluate(model, data_loader, device, num_classes):
    model.eval()
    confmat = utils.ConfusionMatrix(num_classes)
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    with torch.no_grad():
        for image, target in metric_logger.log_every(data_loader, 100, header):
            image, target = image.to(device), target.to(device)
            output = model(image)
            output = output['out']

            confmat.update(target.flatten(), output.argmax(1).flatten())

        confmat.reduce_from_all_processes()

    return confmat


def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, print_freq):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    header = 'Epoch: [{}]'.format(epoch)
    for image, target in metric_logger.log_every(data_loader, print_freq, header):
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        lr_scheduler.step()

        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])


def main(args):
    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

104
105
    dataset, num_classes = get_dataset(args.data_path, args.dataset, "train", get_transform(train=True))
    dataset_test, _ = get_dataset(args.data_path, args.dataset, "val", get_transform(train=False))
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn, drop_last=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1,
        sampler=test_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

124
125
126
    model = torchvision.models.segmentation.__dict__[args.model](num_classes=num_classes,
                                                                 aux_loss=args.aux_loss,
                                                                 pretrained=args.pretrained)
127
128
    model.to(device)
    if args.distributed:
Francisco Massa's avatar
Francisco Massa committed
129
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    if args.test_only:
        confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
        print(confmat)
        return

    params_to_optimize = [
        {"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
        {"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
    ]
    if args.aux_loss:
        params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
        params_to_optimize.append({"params": params, "lr": args.lr * 10})
    optimizer = torch.optim.SGD(
        params_to_optimize,
        lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
        optimizer,
        lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)

156
157
158
159
160
161
162
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        args.start_epoch = checkpoint['epoch'] + 1

163
    start_time = time.time()
164
    for epoch in range(args.start_epoch, args.epochs):
165
166
167
168
169
170
171
172
173
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, args.print_freq)
        confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
        print(confmat)
        utils.save_on_master(
            {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
174
                'lr_scheduler': lr_scheduler.state_dict(),
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                'epoch': epoch,
                'args': args
            },
            os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


def parse_args():
    import argparse
    parser = argparse.ArgumentParser(description='PyTorch Segmentation Training')

189
190
    parser.add_argument('--data-path', default='/datasets01/COCO/022719/', help='dataset path')
    parser.add_argument('--dataset', default='coco', help='dataset name')
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    parser.add_argument('--model', default='fcn_resnet101', help='model')
    parser.add_argument('--aux-loss', action='store_true', help='auxiliar loss')
    parser.add_argument('--device', default='cuda', help='device')
    parser.add_argument('-b', '--batch-size', default=8, type=int)
    parser.add_argument('--epochs', default=30, type=int, metavar='N',
                        help='number of total epochs to run')

    parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
                        help='number of data loading workers (default: 16)')
    parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
209
210
    parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                        help='start epoch')
211
212
213
214
215
216
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
217
218
219
220
221
222
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )
223
224
225
226
227
228
229
230
231
232
233
234
    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')

    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    main(args)