"src/vscode:/vscode.git/clone" did not exist on "ca2635d9ee189de6df2659bfe561e4a27b8365b1"
train.py 8.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn
import torchvision

from coco_utils import get_coco
import transforms as T
import utils


def get_dataset(name, image_set, transform):
    def sbd(*args, **kwargs):
        return torchvision.datasets.SBDataset(*args, mode='segmentation', **kwargs)
    paths = {
        "voc": ('/datasets01/VOC/060817/', torchvision.datasets.VOCSegmentation, 21),
        "voc_aug": ('/datasets01/SBDD/072318/', sbd, 21),
        "coco": ('/datasets01/COCO/022719/', get_coco, 21)
    }
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


def get_transform(train):
    base_size = 520
    crop_size = 480

    min_size = int((0.5 if train else 1.0) * base_size)
    max_size = int((2.0 if train else 1.0) * base_size)
    transforms = []
    transforms.append(T.RandomResize(min_size, max_size))
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
        transforms.append(T.RandomCrop(crop_size))
    transforms.append(T.ToTensor())
    transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406],
                                  std=[0.229, 0.224, 0.225]))

    return T.Compose(transforms)


def criterion(inputs, target):
    losses = {}
    for name, x in inputs.items():
        losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)

    if len(losses) == 1:
        return losses['out']

    return losses['out'] + 0.5 * losses['aux']


def evaluate(model, data_loader, device, num_classes):
    model.eval()
    confmat = utils.ConfusionMatrix(num_classes)
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    with torch.no_grad():
        for image, target in metric_logger.log_every(data_loader, 100, header):
            image, target = image.to(device), target.to(device)
            output = model(image)
            output = output['out']

            confmat.update(target.flatten(), output.argmax(1).flatten())

        confmat.reduce_from_all_processes()

    return confmat


def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, print_freq):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
    header = 'Epoch: [{}]'.format(epoch)
    for image, target in metric_logger.log_every(data_loader, print_freq, header):
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        lr_scheduler.step()

        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])


def main(args):
    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(train=True))
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(train=False))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=args.batch_size,
        sampler=train_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn, drop_last=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1,
        sampler=test_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

124
125
126
    model = torchvision.models.segmentation.__dict__[args.model](num_classes=num_classes,
                                                                 aux_loss=args.aux_loss,
                                                                 pretrained=args.pretrained)
127
128
    model.to(device)
    if args.distributed:
Francisco Massa's avatar
Francisco Massa committed
129
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model.load_state_dict(checkpoint['model'])

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    if args.test_only:
        confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
        print(confmat)
        return

    params_to_optimize = [
        {"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
        {"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
    ]
    if args.aux_loss:
        params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
        params_to_optimize.append({"params": params, "lr": args.lr * 10})
    optimizer = torch.optim.SGD(
        params_to_optimize,
        lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
        optimizer,
        lambda x: (1 - x / (len(data_loader) * args.epochs)) ** 0.9)

    start_time = time.time()
    for epoch in range(args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, args.print_freq)
        confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
        print(confmat)
        utils.save_on_master(
            {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'args': args
            },
            os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


def parse_args():
    import argparse
    parser = argparse.ArgumentParser(description='PyTorch Segmentation Training')

    parser.add_argument('--dataset', default='voc', help='dataset')
    parser.add_argument('--model', default='fcn_resnet101', help='model')
    parser.add_argument('--aux-loss', action='store_true', help='auxiliar loss')
    parser.add_argument('--device', default='cuda', help='device')
    parser.add_argument('-b', '--batch-size', default=8, type=int)
    parser.add_argument('--epochs', default=30, type=int, metavar='N',
                        help='number of total epochs to run')

    parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
                        help='number of data loading workers (default: 16)')
    parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
210
211
212
213
214
215
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )
216
217
218
219
220
221
222
223
224
225
226
227
    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')

    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    main(args)