"apps/life_sci/python/dgllife/model/pretrain.py" did not exist on "9df8cd324207d3924439c3d912229811e34687f0"
test_utils.py 21 KB
Newer Older
1
import os
2
import re
Francisco Massa's avatar
Francisco Massa committed
3
import sys
4
import tempfile
5
from io import BytesIO
6
7
8
9

import numpy as np
import pytest
import torch
10
import torchvision.transforms.functional as F
11
import torchvision.utils as utils
12
from common_utils import assert_equal, cpu_and_cuda
13
from PIL import __version__ as PILLOW_VERSION, Image, ImageColor
14
from torchvision.transforms.v2.functional import to_dtype
Nicolas Hug's avatar
Nicolas Hug committed
15
16


17
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
18

19
boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
20

21
22
keypoints = torch.tensor([[[10, 10], [5, 5], [2, 2]], [[20, 20], [30, 30], [3, 3]]], dtype=torch.float)

23

24
25
26
27
28
def test_make_grid_not_inplace():
    t = torch.rand(5, 3, 10, 10)
    t_clone = t.clone()

    utils.make_grid(t, normalize=False)
29
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
30
31

    utils.make_grid(t, normalize=True, scale_each=False)
32
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
33
34

    utils.make_grid(t, normalize=True, scale_each=True)
35
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
36
37
38
39
40
41
42
43
44
45
46
47
48


def test_normalize_in_make_grid():
    t = torch.rand(5, 3, 10, 10) * 255
    norm_max = torch.tensor(1.0)
    norm_min = torch.tensor(0.0)

    grid = utils.make_grid(t, normalize=True)
    grid_max = torch.max(grid)
    grid_min = torch.min(grid)

    # Rounding the result to one decimal for comparison
    n_digits = 1
49
50
    rounded_grid_max = torch.round(grid_max * 10**n_digits) / (10**n_digits)
    rounded_grid_min = torch.round(grid_min * 10**n_digits) / (10**n_digits)
51

52
53
    assert_equal(norm_max, rounded_grid_max, msg="Normalized max is not equal to 1")
    assert_equal(norm_min, rounded_grid_min, msg="Normalized min is not equal to 0")
54
55


56
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
57
def test_save_image():
58
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
59
60
        t = torch.rand(2, 3, 64, 64)
        utils.save_image(t, f.name)
61
        assert os.path.exists(f.name), "The image is not present after save"
62

63

64
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
65
def test_save_image_single_pixel():
66
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
67
68
        t = torch.rand(1, 3, 1, 1)
        utils.save_image(t, f.name)
69
        assert os.path.exists(f.name), "The pixel image is not present after save"
70
71


72
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
73
def test_save_image_file_object():
74
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
75
76
77
78
        t = torch.rand(2, 3, 64, 64)
        utils.save_image(t, f.name)
        img_orig = Image.open(f.name)
        fp = BytesIO()
79
        utils.save_image(t, fp, format="png")
80
        img_bytes = Image.open(fp)
81
        assert_equal(F.pil_to_tensor(img_orig), F.pil_to_tensor(img_bytes), msg="Image not stored in file object")
82
83


84
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
85
def test_save_image_single_pixel_file_object():
86
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
87
88
89
90
        t = torch.rand(1, 3, 1, 1)
        utils.save_image(t, f.name)
        img_orig = Image.open(f.name)
        fp = BytesIO()
91
        utils.save_image(t, fp, format="png")
92
        img_bytes = Image.open(fp)
93
        assert_equal(F.pil_to_tensor(img_orig), F.pil_to_tensor(img_bytes), msg="Image not stored in file object")
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


def test_draw_boxes():
    img = torch.full((3, 100, 100), 255, dtype=torch.uint8)
    img_cp = img.clone()
    boxes_cp = boxes.clone()
    labels = ["a", "b", "c", "d"]
    colors = ["green", "#FF00FF", (0, 255, 0), "red"]
    result = utils.draw_bounding_boxes(img, boxes, labels=labels, colors=colors, fill=True)

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_util.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

109
    if PILLOW_VERSION >= (10, 1):
110
        # The reference image is only valid for new PIL versions
111
        expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
112
        assert_equal(result, expected)
113

114
115
116
117
118
    # Check if modification is not in place
    assert_equal(boxes, boxes_cp)
    assert_equal(img, img_cp)


119
@pytest.mark.parametrize("colors", [None, ["red", "blue", "#FF00FF", (1, 34, 122)], "red", "#FF00FF", (1, 34, 122)])
120
121
122
123
def test_draw_boxes_colors(colors):
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors=colors)

124
125
126
    with pytest.raises(ValueError, match="Number of colors must be equal or larger than the number of objects"):
        utils.draw_bounding_boxes(image=img, boxes=boxes, colors=[])

127

128
129
130
131
def test_draw_boxes_vanilla():
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
    boxes_cp = boxes.clone()
132
    result = utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors="white")
133
134
135
136
137
138
139
140
141
142
143
144
145

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_vanilla.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)
    # Check if modification is not in place
    assert_equal(boxes, boxes_cp)
    assert_equal(img, img_cp)


146
147
148
149
150
151
152
def test_draw_boxes_grayscale():
    img = torch.full((1, 4, 4), fill_value=255, dtype=torch.uint8)
    boxes = torch.tensor([[0, 0, 3, 3]], dtype=torch.int64)
    bboxed_img = utils.draw_bounding_boxes(image=img, boxes=boxes, colors=["#1BBC9B"])
    assert bboxed_img.size(0) == 3


153
154
155
156
def test_draw_invalid_boxes():
    img_tp = ((1, 1, 1), (1, 2, 3))
    img_wrong1 = torch.full((3, 5, 5), 255, dtype=torch.float)
    img_wrong2 = torch.full((1, 3, 5, 5), 255, dtype=torch.uint8)
157
    img_correct = torch.zeros((3, 10, 10), dtype=torch.uint8)
158
    boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
159
    boxes_wrong = torch.tensor([[10, 10, 4, 5], [30, 20, 10, 5]], dtype=torch.float)
160
161
162
    labels_wrong = ["one", "two"]
    colors_wrong = ["pink", "blue"]

163
164
165
166
167
168
    with pytest.raises(TypeError, match="Tensor expected"):
        utils.draw_bounding_boxes(img_tp, boxes)
    with pytest.raises(ValueError, match="Tensor uint8 expected"):
        utils.draw_bounding_boxes(img_wrong1, boxes)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        utils.draw_bounding_boxes(img_wrong2, boxes)
169
170
    with pytest.raises(ValueError, match="Only grayscale and RGB images are supported"):
        utils.draw_bounding_boxes(img_wrong2[0][:2], boxes)
171
172
173
174
    with pytest.raises(ValueError, match="Number of boxes"):
        utils.draw_bounding_boxes(img_correct, boxes, labels_wrong)
    with pytest.raises(ValueError, match="Number of colors"):
        utils.draw_bounding_boxes(img_correct, boxes, colors=colors_wrong)
175
176
    with pytest.raises(ValueError, match="Boxes need to be in"):
        utils.draw_bounding_boxes(img_correct, boxes_wrong)
177

178

179
180
181
182
183
184
185
def test_draw_boxes_warning():
    img = torch.full((3, 100, 100), 255, dtype=torch.uint8)

    with pytest.warns(UserWarning, match=re.escape("Argument 'font_size' will be ignored since 'font' is not set.")):
        utils.draw_bounding_boxes(img, boxes, font_size=11)


186
187
188
189
190
def test_draw_no_boxes():
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    boxes = torch.full((0, 4), 0, dtype=torch.float)
    with pytest.warns(UserWarning, match=re.escape("boxes doesn't contain any box. No box was drawn")):
        res = utils.draw_bounding_boxes(img, boxes)
191
        # Check that the function didn't change the image
192
193
194
        assert res.eq(img).all()


195
196
197
198
@pytest.mark.parametrize(
    "colors",
    [
        None,
199
200
201
        "blue",
        "#FF00FF",
        (1, 34, 122),
202
203
204
205
206
        ["red", "blue"],
        ["#FF00FF", (1, 34, 122)],
    ],
)
@pytest.mark.parametrize("alpha", (0, 0.5, 0.7, 1))
207
208
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_draw_segmentation_masks(colors, alpha, device):
209
210
211
    """This test makes sure that masks draw their corresponding color where they should"""
    num_masks, h, w = 2, 100, 100
    dtype = torch.uint8
212
    img = torch.randint(0, 256, size=(3, h, w), dtype=dtype, device=device)
213
214
215
    masks = torch.zeros((num_masks, h, w), dtype=torch.bool, device=device)
    masks[0, 10:20, 10:20] = True
    masks[1, 15:25, 15:25] = True
216
217
218
219
220
221
222
223
224

    overlap = masks[0] & masks[1]

    out = utils.draw_segmentation_masks(img, masks, colors=colors, alpha=alpha)
    assert out.dtype == dtype
    assert out is not img

    # Make sure the image didn't change where there's no mask
    masked_pixels = masks[0] | masks[1]
225
    assert_equal(img[:, ~masked_pixels], out[:, ~masked_pixels])
226
227
228

    if colors is None:
        colors = utils._generate_color_palette(num_masks)
229
230
    elif isinstance(colors, str) or isinstance(colors, tuple):
        colors = [colors]
231
232
233
234
235

    # Make sure each mask draws with its own color
    for mask, color in zip(masks, colors):
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
236
        color = torch.tensor(color, dtype=dtype, device=device)
237
238

        if alpha == 1:
239
            assert (out[:, mask & ~overlap] == color[:, None]).all()
240
        elif alpha == 0:
241
            assert (out[:, mask & ~overlap] == img[:, mask & ~overlap]).all()
242

243
244
245
246
247
        interpolated_color = (img[:, mask & ~overlap] * (1 - alpha) + color[:, None] * alpha).to(dtype)
        torch.testing.assert_close(out[:, mask & ~overlap], interpolated_color, rtol=0.0, atol=1.0)

    interpolated_overlap = (img[:, overlap] * (1 - alpha)).to(dtype)
    torch.testing.assert_close(out[:, overlap], interpolated_overlap, rtol=0.0, atol=1.0)
248
249


250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def test_draw_segmentation_masks_dtypes():
    num_masks, h, w = 2, 100, 100

    masks = torch.randint(0, 2, (num_masks, h, w), dtype=torch.bool)

    img_uint8 = torch.randint(0, 256, size=(3, h, w), dtype=torch.uint8)
    out_uint8 = utils.draw_segmentation_masks(img_uint8, masks)

    assert img_uint8 is not out_uint8
    assert out_uint8.dtype == torch.uint8

    img_float = to_dtype(img_uint8, torch.float, scale=True)
    out_float = utils.draw_segmentation_masks(img_float, masks)

    assert img_float is not out_float
    assert out_float.is_floating_point()

    torch.testing.assert_close(out_uint8, to_dtype(out_float, torch.uint8, scale=True), rtol=0, atol=1)


270
271
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_draw_segmentation_masks_errors(device):
272
273
    h, w = 10, 10

274
275
    masks = torch.randint(0, 2, size=(h, w), dtype=torch.bool, device=device)
    img = torch.randint(0, 256, size=(3, h, w), dtype=torch.uint8, device=device)
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

    with pytest.raises(TypeError, match="The image must be a tensor"):
        utils.draw_segmentation_masks(image="Not A Tensor Image", masks=masks)
    with pytest.raises(ValueError, match="The image dtype must be"):
        img_bad_dtype = torch.randint(0, 256, size=(3, h, w), dtype=torch.int64)
        utils.draw_segmentation_masks(image=img_bad_dtype, masks=masks)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
        utils.draw_segmentation_masks(image=batch, masks=masks)
    with pytest.raises(ValueError, match="Pass an RGB image"):
        one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
        utils.draw_segmentation_masks(image=one_channel, masks=masks)
    with pytest.raises(ValueError, match="The masks must be of dtype bool"):
        masks_bad_dtype = torch.randint(0, 2, size=(h, w), dtype=torch.float)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_dtype)
    with pytest.raises(ValueError, match="masks must be of shape"):
        masks_bad_shape = torch.randint(0, 2, size=(3, 2, h, w), dtype=torch.bool)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
    with pytest.raises(ValueError, match="must have the same height and width"):
        masks_bad_shape = torch.randint(0, 2, size=(h + 4, w), dtype=torch.bool)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
297
    with pytest.raises(ValueError, match="Number of colors must be equal or larger than the number of objects"):
298
        utils.draw_segmentation_masks(image=img, masks=masks, colors=[])
299
    with pytest.raises(ValueError, match="`colors` must be a tuple or a string, or a list thereof"):
300
        bad_colors = np.array(["red", "blue"])  # should be a list
301
        utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
302
    with pytest.raises(ValueError, match="If passed as tuple, colors should be an RGB triplet"):
303
        bad_colors = ("red", "blue")  # should be a list
304
        utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
305

306

307
308
309
310
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_draw_no_segmention_mask(device):
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8, device=device)
    masks = torch.full((0, 100, 100), 0, dtype=torch.bool, device=device)
311
312
    with pytest.warns(UserWarning, match=re.escape("masks doesn't contain any mask. No mask was drawn")):
        res = utils.draw_segmentation_masks(img, masks)
313
        # Check that the function didn't change the image
314
315
316
        assert res.eq(img).all()


317
318
319
320
321
322
def test_draw_keypoints_vanilla():
    # Keypoints is declared on top as global variable
    keypoints_cp = keypoints.clone()

    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
323
324
325
326
327
328
329
330
    result = utils.draw_keypoints(
        img,
        keypoints,
        colors="red",
        connectivity=[
            (0, 1),
        ],
    )
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoint_vanilla.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)
    # Check that keypoints are not modified inplace
    assert_equal(keypoints, keypoints_cp)
    # Check that image is not modified in place
    assert_equal(img, img_cp)


@pytest.mark.parametrize("colors", ["red", "#FF00FF", (1, 34, 122)])
def test_draw_keypoints_colored(colors):
    # Keypoints is declared on top as global variable
    keypoints_cp = keypoints.clone()

    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
351
352
353
354
355
356
357
358
    result = utils.draw_keypoints(
        img,
        keypoints,
        colors=colors,
        connectivity=[
            (0, 1),
        ],
    )
359
360
361
362
363
    assert result.size(0) == 3
    assert_equal(keypoints, keypoints_cp)
    assert_equal(img, img_cp)


364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
@pytest.mark.parametrize("connectivity", [[(0, 1)], [(0, 1), (1, 2)]])
@pytest.mark.parametrize(
    "vis",
    [
        torch.tensor([[1, 1, 0], [1, 1, 0]], dtype=torch.bool),
        torch.tensor([[1, 1, 0], [1, 1, 0]], dtype=torch.float).unsqueeze_(-1),
    ],
)
def test_draw_keypoints_visibility(connectivity, vis):
    # Keypoints is declared on top as global variable
    keypoints_cp = keypoints.clone()

    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()

    vis_cp = vis if vis is None else vis.clone()

    result = utils.draw_keypoints(
        image=img,
        keypoints=keypoints,
        connectivity=connectivity,
        colors="red",
        visibility=vis,
    )
    assert result.size(0) == 3
    assert_equal(keypoints, keypoints_cp)
    assert_equal(img, img_cp)

    # compare with a fakedata image
    # connect the key points 0 to 1 for both skeletons and do not show the other key points
    path = os.path.join(
        os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoints_visibility.png"
    )
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)

    if vis_cp is None:
        assert vis is None
    else:
        assert_equal(vis, vis_cp)
        assert vis.dtype == vis_cp.dtype


def test_draw_keypoints_visibility_default():
    # Keypoints is declared on top as global variable
    keypoints_cp = keypoints.clone()

    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()

    result = utils.draw_keypoints(
        image=img,
        keypoints=keypoints,
        connectivity=[(0, 1)],
        colors="red",
        visibility=None,
    )
    assert result.size(0) == 3
    assert_equal(keypoints, keypoints_cp)
    assert_equal(img, img_cp)

    # compare against fakedata image, which connects 0->1 for both key-point skeletons
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_keypoint_vanilla.png")
    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)


435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def test_draw_keypoints_dtypes():
    image_uint8 = torch.randint(0, 256, size=(3, 100, 100), dtype=torch.uint8)
    image_float = to_dtype(image_uint8, torch.float, scale=True)

    out_uint8 = utils.draw_keypoints(image_uint8, keypoints)
    out_float = utils.draw_keypoints(image_float, keypoints)

    assert out_uint8.dtype == torch.uint8
    assert out_uint8 is not image_uint8

    assert out_float.is_floating_point()
    assert out_float is not image_float

    torch.testing.assert_close(out_uint8, to_dtype(out_float, torch.uint8, scale=True), rtol=0, atol=1)


451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def test_draw_keypoints_errors():
    h, w = 10, 10
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)

    with pytest.raises(TypeError, match="The image must be a tensor"):
        utils.draw_keypoints(image="Not A Tensor Image", keypoints=keypoints)
    with pytest.raises(ValueError, match="The image dtype must be"):
        img_bad_dtype = torch.full((3, h, w), 0, dtype=torch.int64)
        utils.draw_keypoints(image=img_bad_dtype, keypoints=keypoints)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
        utils.draw_keypoints(image=batch, keypoints=keypoints)
    with pytest.raises(ValueError, match="Pass an RGB image"):
        one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
        utils.draw_keypoints(image=one_channel, keypoints=keypoints)
    with pytest.raises(ValueError, match="keypoints must be of shape"):
        invalid_keypoints = torch.tensor([[10, 10, 10, 10], [5, 6, 7, 8]], dtype=torch.float)
        utils.draw_keypoints(image=img, keypoints=invalid_keypoints)
469
470
471
472
473
474
475
476
477
478
479
480
    with pytest.raises(ValueError, match=re.escape("visibility must be of shape (num_instances, K)")):
        one_dim_visibility = torch.tensor([True, True, True], dtype=torch.bool)
        utils.draw_keypoints(image=img, keypoints=keypoints, visibility=one_dim_visibility)
    with pytest.raises(ValueError, match=re.escape("visibility must be of shape (num_instances, K)")):
        three_dim_visibility = torch.ones((2, 3, 4), dtype=torch.bool)
        utils.draw_keypoints(image=img, keypoints=keypoints, visibility=three_dim_visibility)
    with pytest.raises(ValueError, match="keypoints and visibility must have the same dimensionality"):
        vis_wrong_n = torch.ones((3, 3), dtype=torch.bool)
        utils.draw_keypoints(image=img, keypoints=keypoints, visibility=vis_wrong_n)
    with pytest.raises(ValueError, match="keypoints and visibility must have the same dimensionality"):
        vis_wrong_k = torch.ones((2, 4), dtype=torch.bool)
        utils.draw_keypoints(image=img, keypoints=keypoints, visibility=vis_wrong_k)
481
482


483
484
@pytest.mark.parametrize("batch", (True, False))
def test_flow_to_image(batch):
485
486
487
488
489
    h, w = 100, 100
    flow = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
    flow = torch.stack(flow[::-1], dim=0).float()
    flow[0] -= h / 2
    flow[1] -= w / 2
490
491
492
493

    if batch:
        flow = torch.stack([flow, flow])

494
    img = utils.flow_to_image(flow)
495
496
    assert img.shape == (2, 3, h, w) if batch else (3, h, w)

497
    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "expected_flow.pt")
498
    expected_img = torch.load(path, map_location="cpu", weights_only=True)
499

500
501
502
503
    if batch:
        expected_img = torch.stack([expected_img, expected_img])

    assert_equal(expected_img, img)
504
505


506
507
508
509
510
511
512
513
514
515
516
517
518
@pytest.mark.parametrize(
    "input_flow, match",
    (
        (torch.full((3, 10, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((5, 3, 10, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((2, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((5, 2, 10), 0, dtype=torch.float), "Input flow should have shape"),
        (torch.full((2, 10, 30), 0, dtype=torch.int), "Flow should be of dtype torch.float"),
    ),
)
def test_flow_to_image_errors(input_flow, match):
    with pytest.raises(ValueError, match=match):
        utils.flow_to_image(flow=input_flow)
519
520


521
522
if __name__ == "__main__":
    pytest.main([__file__])