test_utils.py 10.2 KB
Newer Older
1
import os
Francisco Massa's avatar
Francisco Massa committed
2
import sys
3
import tempfile
4
from io import BytesIO
5
6
7
8

import numpy as np
import pytest
import torch
9
import torchvision.transforms.functional as F
10
import torchvision.utils as utils
11
from common_utils import assert_equal
12
from PIL import Image, __version__ as PILLOW_VERSION, ImageColor
Nicolas Hug's avatar
Nicolas Hug committed
13
14


15
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
16

17
boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
18

19

20
21
22
23
24
def test_make_grid_not_inplace():
    t = torch.rand(5, 3, 10, 10)
    t_clone = t.clone()

    utils.make_grid(t, normalize=False)
25
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
26
27

    utils.make_grid(t, normalize=True, scale_each=False)
28
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
29
30

    utils.make_grid(t, normalize=True, scale_each=True)
31
    assert_equal(t, t_clone, msg="make_grid modified tensor in-place")
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def test_normalize_in_make_grid():
    t = torch.rand(5, 3, 10, 10) * 255
    norm_max = torch.tensor(1.0)
    norm_min = torch.tensor(0.0)

    grid = utils.make_grid(t, normalize=True)
    grid_max = torch.max(grid)
    grid_min = torch.min(grid)

    # Rounding the result to one decimal for comparison
    n_digits = 1
    rounded_grid_max = torch.round(grid_max * 10 ** n_digits) / (10 ** n_digits)
    rounded_grid_min = torch.round(grid_min * 10 ** n_digits) / (10 ** n_digits)

48
49
    assert_equal(norm_max, rounded_grid_max, msg="Normalized max is not equal to 1")
    assert_equal(norm_min, rounded_grid_min, msg="Normalized min is not equal to 0")
50
51


52
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
53
def test_save_image():
54
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
55
56
        t = torch.rand(2, 3, 64, 64)
        utils.save_image(t, f.name)
57
        assert os.path.exists(f.name), "The image is not present after save"
58

59

60
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
61
def test_save_image_single_pixel():
62
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
63
64
        t = torch.rand(1, 3, 1, 1)
        utils.save_image(t, f.name)
65
        assert os.path.exists(f.name), "The pixel image is not present after save"
66
67


68
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
69
def test_save_image_file_object():
70
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
71
72
73
74
        t = torch.rand(2, 3, 64, 64)
        utils.save_image(t, f.name)
        img_orig = Image.open(f.name)
        fp = BytesIO()
75
        utils.save_image(t, fp, format="png")
76
        img_bytes = Image.open(fp)
77
        assert_equal(F.to_tensor(img_orig), F.to_tensor(img_bytes), msg="Image not stored in file object")
78
79


80
@pytest.mark.skipif(sys.platform in ("win32", "cygwin"), reason="temporarily disabled on Windows")
81
def test_save_image_single_pixel_file_object():
82
    with tempfile.NamedTemporaryFile(suffix=".png") as f:
83
84
85
86
        t = torch.rand(1, 3, 1, 1)
        utils.save_image(t, f.name)
        img_orig = Image.open(f.name)
        fp = BytesIO()
87
        utils.save_image(t, fp, format="png")
88
        img_bytes = Image.open(fp)
89
        assert_equal(F.to_tensor(img_orig), F.to_tensor(img_bytes), msg="Image not stored in file object")
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


def test_draw_boxes():
    img = torch.full((3, 100, 100), 255, dtype=torch.uint8)
    img_cp = img.clone()
    boxes_cp = boxes.clone()
    labels = ["a", "b", "c", "d"]
    colors = ["green", "#FF00FF", (0, 255, 0), "red"]
    result = utils.draw_bounding_boxes(img, boxes, labels=labels, colors=colors, fill=True)

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_util.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    if PILLOW_VERSION >= (8, 2):
        # The reference image is only valid for new PIL versions
107
        expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
108
        assert_equal(result, expected)
109

110
111
112
113
114
    # Check if modification is not in place
    assert_equal(boxes, boxes_cp)
    assert_equal(img, img_cp)


115
@pytest.mark.parametrize("colors", [None, ["red", "blue", "#FF00FF", (1, 34, 122)], "red", "#FF00FF", (1, 34, 122)])
116
117
118
119
120
def test_draw_boxes_colors(colors):
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    utils.draw_bounding_boxes(img, boxes, fill=False, width=7, colors=colors)


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def test_draw_boxes_vanilla():
    img = torch.full((3, 100, 100), 0, dtype=torch.uint8)
    img_cp = img.clone()
    boxes_cp = boxes.clone()
    result = utils.draw_bounding_boxes(img, boxes, fill=False, width=7)

    path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "fakedata", "draw_boxes_vanilla.png")
    if not os.path.exists(path):
        res = Image.fromarray(result.permute(1, 2, 0).contiguous().numpy())
        res.save(path)

    expected = torch.as_tensor(np.array(Image.open(path))).permute(2, 0, 1)
    assert_equal(result, expected)
    # Check if modification is not in place
    assert_equal(boxes, boxes_cp)
    assert_equal(img, img_cp)


139
140
141
142
143
144
145
def test_draw_boxes_grayscale():
    img = torch.full((1, 4, 4), fill_value=255, dtype=torch.uint8)
    boxes = torch.tensor([[0, 0, 3, 3]], dtype=torch.int64)
    bboxed_img = utils.draw_bounding_boxes(image=img, boxes=boxes, colors=["#1BBC9B"])
    assert bboxed_img.size(0) == 3


146
147
148
149
def test_draw_invalid_boxes():
    img_tp = ((1, 1, 1), (1, 2, 3))
    img_wrong1 = torch.full((3, 5, 5), 255, dtype=torch.float)
    img_wrong2 = torch.full((1, 3, 5, 5), 255, dtype=torch.uint8)
150
    boxes = torch.tensor([[0, 0, 20, 20], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
151
152
153
154
155
156
    with pytest.raises(TypeError, match="Tensor expected"):
        utils.draw_bounding_boxes(img_tp, boxes)
    with pytest.raises(ValueError, match="Tensor uint8 expected"):
        utils.draw_bounding_boxes(img_wrong1, boxes)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        utils.draw_bounding_boxes(img_wrong2, boxes)
157
158
    with pytest.raises(ValueError, match="Only grayscale and RGB images are supported"):
        utils.draw_bounding_boxes(img_wrong2[0][:2], boxes)
159

160

161
162
163
164
165
166
167
168
169
@pytest.mark.parametrize(
    "colors",
    [
        None,
        ["red", "blue"],
        ["#FF00FF", (1, 34, 122)],
    ],
)
@pytest.mark.parametrize("alpha", (0, 0.5, 0.7, 1))
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def test_draw_segmentation_masks(colors, alpha):
    """This test makes sure that masks draw their corresponding color where they should"""
    num_masks, h, w = 2, 100, 100
    dtype = torch.uint8
    img = torch.randint(0, 256, size=(3, h, w), dtype=dtype)
    masks = torch.randint(0, 2, (num_masks, h, w), dtype=torch.bool)

    # For testing we enforce that there's no overlap between the masks. The
    # current behaviour is that the last mask's color will take priority when
    # masks overlap, but this makes testing slightly harder so we don't really
    # care
    overlap = masks[0] & masks[1]
    masks[:, overlap] = False

    out = utils.draw_segmentation_masks(img, masks, colors=colors, alpha=alpha)
    assert out.dtype == dtype
    assert out is not img

    # Make sure the image didn't change where there's no mask
    masked_pixels = masks[0] | masks[1]
190
    assert_equal(img[:, ~masked_pixels], out[:, ~masked_pixels])
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    if colors is None:
        colors = utils._generate_color_palette(num_masks)

    # Make sure each mask draws with its own color
    for mask, color in zip(masks, colors):
        if isinstance(color, str):
            color = ImageColor.getrgb(color)
        color = torch.tensor(color, dtype=dtype)

        if alpha == 1:
            assert (out[:, mask] == color[:, None]).all()
        elif alpha == 0:
            assert (out[:, mask] == img[:, mask]).all()

206
207
        interpolated_color = (img[:, mask] * (1 - alpha) + color[:, None] * alpha).to(dtype)
        torch.testing.assert_close(out[:, mask], interpolated_color, rtol=0.0, atol=1.0)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238


def test_draw_segmentation_masks_errors():
    h, w = 10, 10

    masks = torch.randint(0, 2, size=(h, w), dtype=torch.bool)
    img = torch.randint(0, 256, size=(3, h, w), dtype=torch.uint8)

    with pytest.raises(TypeError, match="The image must be a tensor"):
        utils.draw_segmentation_masks(image="Not A Tensor Image", masks=masks)
    with pytest.raises(ValueError, match="The image dtype must be"):
        img_bad_dtype = torch.randint(0, 256, size=(3, h, w), dtype=torch.int64)
        utils.draw_segmentation_masks(image=img_bad_dtype, masks=masks)
    with pytest.raises(ValueError, match="Pass individual images, not batches"):
        batch = torch.randint(0, 256, size=(10, 3, h, w), dtype=torch.uint8)
        utils.draw_segmentation_masks(image=batch, masks=masks)
    with pytest.raises(ValueError, match="Pass an RGB image"):
        one_channel = torch.randint(0, 256, size=(1, h, w), dtype=torch.uint8)
        utils.draw_segmentation_masks(image=one_channel, masks=masks)
    with pytest.raises(ValueError, match="The masks must be of dtype bool"):
        masks_bad_dtype = torch.randint(0, 2, size=(h, w), dtype=torch.float)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_dtype)
    with pytest.raises(ValueError, match="masks must be of shape"):
        masks_bad_shape = torch.randint(0, 2, size=(3, 2, h, w), dtype=torch.bool)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
    with pytest.raises(ValueError, match="must have the same height and width"):
        masks_bad_shape = torch.randint(0, 2, size=(h + 4, w), dtype=torch.bool)
        utils.draw_segmentation_masks(image=img, masks=masks_bad_shape)
    with pytest.raises(ValueError, match="There are more masks"):
        utils.draw_segmentation_masks(image=img, masks=masks, colors=[])
    with pytest.raises(ValueError, match="colors must be a tuple or a string, or a list thereof"):
239
        bad_colors = np.array(["red", "blue"])  # should be a list
240
241
        utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
    with pytest.raises(ValueError, match="It seems that you passed a tuple of colors instead of"):
242
        bad_colors = ("red", "blue")  # should be a list
243
        utils.draw_segmentation_masks(image=img, masks=masks, colors=bad_colors)
244

245

246
247
if __name__ == "__main__":
    pytest.main([__file__])