mnist.py 18.6 KB
Newer Older
Tian Qi Chen's avatar
Tian Qi Chen committed
1
from __future__ import print_function
2
from .vision import VisionDataset
3
import warnings
Tian Qi Chen's avatar
Tian Qi Chen committed
4
5
6
from PIL import Image
import os
import os.path
7
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
8
9
import torch
import codecs
10
11
from .utils import download_url, download_and_extract_archive, extract_archive, \
    makedir_exist_ok, verify_str_arg
Tian Qi Chen's avatar
Tian Qi Chen committed
12

13

14
class MNIST(VisionDataset):
15
16
17
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
18
19
        root (string): Root directory of dataset where ``MNIST/processed/training.pt``
            and  ``MNIST/processed/test.pt`` exist.
20
21
22
23
24
25
26
27
28
29
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Tian Qi Chen's avatar
Tian Qi Chen committed
30
31
32
33
34
35
    urls = [
        'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
    ]
36
37
    training_file = 'training.pt'
    test_file = 'test.pt'
38
39
40
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    @property
    def train_labels(self):
        warnings.warn("train_labels has been renamed targets")
        return self.targets

    @property
    def test_labels(self):
        warnings.warn("test_labels has been renamed targets")
        return self.targets

    @property
    def train_data(self):
        warnings.warn("train_data has been renamed data")
        return self.data

    @property
    def test_data(self):
        warnings.warn("test_data has been renamed data")
        return self.data

61
62
63
64
    def __init__(self, root, train=True, transform=None, target_transform=None,
                 download=False):
        super(MNIST, self).__init__(root, transform=transform,
                                    target_transform=target_transform)
65
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
66
67
68
69
70

        if download:
            self.download()

        if not self._check_exists():
71
72
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
73
74

        if self.train:
75
            data_file = self.training_file
Tian Qi Chen's avatar
Tian Qi Chen committed
76
        else:
77
78
            data_file = self.test_file
        self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
79
80

    def __getitem__(self, index):
81
82
83
84
85
86
87
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
88
        img, target = self.data[index], int(self.targets[index])
Tian Qi Chen's avatar
Tian Qi Chen committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
103
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
104

105
106
107
108
109
110
111
112
113
114
115
116
    @property
    def raw_folder(self):
        return os.path.join(self.root, self.__class__.__name__, 'raw')

    @property
    def processed_folder(self):
        return os.path.join(self.root, self.__class__.__name__, 'processed')

    @property
    def class_to_idx(self):
        return {_class: i for i, _class in enumerate(self.classes)}

Tian Qi Chen's avatar
Tian Qi Chen committed
117
    def _check_exists(self):
118
119
120
121
        return (os.path.exists(os.path.join(self.processed_folder,
                                            self.training_file)) and
                os.path.exists(os.path.join(self.processed_folder,
                                            self.test_file)))
122

Tian Qi Chen's avatar
Tian Qi Chen committed
123
    def download(self):
124
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
125
126
127
128

        if self._check_exists():
            return

129
130
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
Tian Qi Chen's avatar
Tian Qi Chen committed
131

132
        # download files
Tian Qi Chen's avatar
Tian Qi Chen committed
133
134
        for url in self.urls:
            filename = url.rpartition('/')[2]
135
            download_and_extract_archive(url, download_root=self.raw_folder, filename=filename)
Tian Qi Chen's avatar
Tian Qi Chen committed
136
137

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
138
139
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
140
        training_set = (
141
142
            read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
143
144
        )
        test_set = (
145
146
            read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte'))
Tian Qi Chen's avatar
Tian Qi Chen committed
147
        )
148
        with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
149
            torch.save(training_set, f)
150
        with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f:
Tian Qi Chen's avatar
Tian Qi Chen committed
151
152
153
154
            torch.save(test_set, f)

        print('Done!')

155
156
    def extra_repr(self):
        return "Split: {}".format("Train" if self.train is True else "Test")
157

158

159
class FashionMNIST(MNIST):
160
161
162
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
163
164
        root (string): Root directory of dataset where ``Fashion-MNIST/processed/training.pt``
            and  ``Fashion-MNIST/processed/test.pt`` exist.
165
166
167
168
169
170
171
172
173
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
174
175
176
177
178
179
180
    """
    urls = [
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz',
    ]
181
182
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
183
184


hysts's avatar
hysts committed
185
186
187
188
class KMNIST(MNIST):
    """`Kuzushiji-MNIST <https://github.com/rois-codh/kmnist>`_ Dataset.

    Args:
189
190
        root (string): Root directory of dataset where ``KMNIST/processed/training.pt``
            and  ``KMNIST/processed/test.pt`` exist.
hysts's avatar
hysts committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
    urls = [
        'http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-images-idx3-ubyte.gz',
        'http://codh.rois.ac.jp/kmnist/dataset/kmnist/train-labels-idx1-ubyte.gz',
        'http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-images-idx3-ubyte.gz',
        'http://codh.rois.ac.jp/kmnist/dataset/kmnist/t10k-labels-idx1-ubyte.gz',
    ]
    classes = ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']


210
class EMNIST(MNIST):
Alex Alemi's avatar
Alex Alemi committed
211
    """`EMNIST <https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist>`_ Dataset.
212
213

    Args:
214
215
        root (string): Root directory of dataset where ``EMNIST/processed/training.pt``
            and  ``EMNIST/processed/test.pt`` exist.
216
217
218
219
220
221
222
223
224
225
226
227
228
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Alex Alemi's avatar
Alex Alemi committed
229
    # Updated URL from https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist
Philip Meier's avatar
Philip Meier committed
230
    url = 'https://cloudstor.aarnet.edu.au/plus/s/ZNmuFiuQTqZlu9W/download'
231
232
233
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')

    def __init__(self, root, split, **kwargs):
234
        self.split = verify_str_arg(split, "split", self.splits)
235
236
237
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
Tian Qi Chen's avatar
Tian Qi Chen committed
238

239
240
    @staticmethod
    def _training_file(split):
241
242
        return 'training_{}.pt'.format(split)

243
244
    @staticmethod
    def _test_file(split):
245
246
247
248
249
        return 'test_{}.pt'.format(split)

    def download(self):
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        import shutil
250

251
252
253
        if self._check_exists():
            return

254
255
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
256

257
        # download files
258
        print('Downloading and extracting zip archive')
259
260
        download_and_extract_archive(self.url, download_root=self.raw_folder, filename="emnist.zip",
                                     remove_finished=True)
261
        gzip_folder = os.path.join(self.raw_folder, 'gzip')
262
263
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
264
                extract_archive(os.path.join(gzip_folder, gzip_file), gzip_folder)
265
266
267
268
269

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
270
271
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
272
273
            )
            test_set = (
274
275
                read_image_file(os.path.join(gzip_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(gzip_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
276
            )
277
            with open(os.path.join(self.processed_folder, self._training_file(split)), 'wb') as f:
278
                torch.save(training_set, f)
279
            with open(os.path.join(self.processed_folder, self._test_file(split)), 'wb') as f:
280
                torch.save(test_set, f)
281
        shutil.rmtree(gzip_folder)
282
283
284
285

        print('Done!')


286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
class QMNIST(MNIST):
    """`QMNIST <https://github.com/facebookresearch/qmnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset whose ``processed''
            subdir contains torch binary files with the datasets.
        what (string,optional): Can be 'train', 'test', 'test10k',
            'test50k', or 'nist' for respectively the mnist compatible
            training set, the 60k qmnist testing set, the 10k qmnist
            examples that match the mnist testing set, the 50k
            remaining qmnist testing examples, or all the nist
            digits. The default is to select 'train' or 'test'
            according to the compatibility argument 'train'.
        compat (bool,optional): A boolean that says whether the target
            for each example is class number (for compatibility with
            the MNIST dataloader) or a torch vector containing the
            full qmnist information. Default=True.
        download (bool, optional): If true, downloads the dataset from
            the internet and puts it in root directory. If dataset is
            already downloaded, it is not downloaded again.
        transform (callable, optional): A function/transform that
            takes in an PIL image and returns a transformed
            version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform
            that takes in the target and transforms it.
        train (bool,optional,compatibility): When argument 'what' is
            not specified, this boolean decides whether to load the
            training set ot the testing set.  Default: True.

    """

    subsets = {
        'train': 'train',
        'test': 'test', 'test10k': 'test', 'test50k': 'test',
        'nist': 'nist'
    }
    urls = {
        'train': ['https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-images-idx3-ubyte.gz',
                  'https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-train-labels-idx2-int.gz'],
        'test': ['https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-images-idx3-ubyte.gz',
                 'https://raw.githubusercontent.com/facebookresearch/qmnist/master/qmnist-test-labels-idx2-int.gz'],
        'nist': ['https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-images-idx3-ubyte.xz',
                 'https://raw.githubusercontent.com/facebookresearch/qmnist/master/xnist-labels-idx2-int.xz']
    }
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']

    def __init__(self, root, what=None, compat=True, train=True, **kwargs):
        if what is None:
            what = 'train' if train else 'test'
336
        self.what = verify_str_arg(what, "what", tuple(self.subsets.keys()))
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        self.compat = compat
        self.data_file = what + '.pt'
        self.training_file = self.data_file
        self.test_file = self.data_file
        super(QMNIST, self).__init__(root, train, **kwargs)

    def download(self):
        """Download the QMNIST data if it doesn't exist in processed_folder already.
           Note that we only download what has been asked for (argument 'what').
        """
        if self._check_exists():
            return
        makedir_exist_ok(self.raw_folder)
        makedir_exist_ok(self.processed_folder)
        urls = self.urls[self.subsets[self.what]]
        files = []

        # download data files if not already there
        for url in urls:
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.raw_folder, filename)
            if not os.path.isfile(file_path):
                download_url(url, root=self.raw_folder, filename=filename, md5=None)
            files.append(file_path)

        # process and save as torch files
        print('Processing...')
        data = read_sn3_pascalvincent_tensor(files[0])
        assert(data.dtype == torch.uint8)
        assert(data.ndimension() == 3)
        targets = read_sn3_pascalvincent_tensor(files[1]).long()
        assert(targets.ndimension() == 2)
        if self.what == 'test10k':
            data = data[0:10000, :, :].clone()
            targets = targets[0:10000, :].clone()
        if self.what == 'test50k':
            data = data[10000:, :, :].clone()
            targets = targets[10000:, :].clone()
        with open(os.path.join(self.processed_folder, self.data_file), 'wb') as f:
            torch.save((data, targets), f)

    def __getitem__(self, index):
        # redefined to handle the compat flag
        img, target = self.data[index], self.targets[index]
        img = Image.fromarray(img.numpy(), mode='L')
        if self.transform is not None:
            img = self.transform(img)
        if self.compat:
            target = int(target[0])
        if self.target_transform is not None:
            target = self.target_transform(target)
        return img, target

    def extra_repr(self):
        return "Split: {}".format(self.what)


394
395
def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
396

397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def open_maybe_compressed_file(path):
    """Return a file object that possibly decompresses 'path' on the fly.
       Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
    """
    if not isinstance(path, torch._six.string_classes):
        return path
    if path.endswith('.gz'):
        import gzip
        return gzip.open(path, 'rb')
    if path.endswith('.xz'):
        import lzma
        return lzma.open(path, 'rb')
    return open(path, 'rb')


def read_sn3_pascalvincent_tensor(path, strict=True):
    """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
       Argument may be a filename, compressed filename, or file object.
    """
    # typemap
    if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'):
        read_sn3_pascalvincent_tensor.typemap = {
            8: (torch.uint8, np.uint8, np.uint8),
            9: (torch.int8, np.int8, np.int8),
            11: (torch.int16, np.dtype('>i2'), 'i2'),
            12: (torch.int32, np.dtype('>i4'), 'i4'),
            13: (torch.float32, np.dtype('>f4'), 'f4'),
            14: (torch.float64, np.dtype('>f8'), 'f8')}
    # read
    with open_maybe_compressed_file(path) as f:
        data = f.read()
    # parse
    magic = get_int(data[0:4])
    nd = magic % 256
    ty = magic // 256
    assert nd >= 1 and nd <= 3
    assert ty >= 8 and ty <= 14
    m = read_sn3_pascalvincent_tensor.typemap[ty]
    s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
    parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
    assert parsed.shape[0] == np.prod(s) or not strict
    return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)


Tian Qi Chen's avatar
Tian Qi Chen committed
442
443
def read_label_file(path):
    with open(path, 'rb') as f:
444
445
446
447
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 1)
    return x.long()
Tian Qi Chen's avatar
Tian Qi Chen committed
448

449

Tian Qi Chen's avatar
Tian Qi Chen committed
450
451
def read_image_file(path):
    with open(path, 'rb') as f:
452
453
454
455
        x = read_sn3_pascalvincent_tensor(f, strict=False)
    assert(x.dtype == torch.uint8)
    assert(x.ndimension() == 3)
    return x