_stereo_matching.py 36.4 KB
Newer Older
1
import functools
Ponku's avatar
Ponku committed
2
import json
Ponku's avatar
Ponku committed
3
import os
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union

import numpy as np
from PIL import Image

from .utils import _read_pfm, verify_str_arg
from .vision import VisionDataset

__all__ = ()

_read_pfm_file = functools.partial(_read_pfm, slice_channels=1)


class StereoMatchingDataset(ABC, VisionDataset):
    """Base interface for Stereo matching datasets"""

    _has_built_in_disparity_mask = False

    def __init__(self, root: str, transforms: Optional[Callable] = None):
        """
        Args:
            root(str): Root directory of the dataset.
            transforms(callable, optional): A function/transform that takes in Tuples of
                (images, disparities, valid_masks) and returns a transformed version of each of them.
                images is a Tuple of (``PIL.Image``, ``PIL.Image``)
                disparities is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (1, H, W)
                valid_masks is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (H, W)
                In some cases, when a dataset does not provide disparities, the ``disparities`` and
                ``valid_masks`` can be Tuples containing None values.
                For training splits generally the datasets provide a minimal guarantee of
                images: (``PIL.Image``, ``PIL.Image``)
                disparities: (``np.ndarray``, ``None``) with shape (1, H, W)
                Optionally, based on the dataset, it can return a ``mask`` as well:
                valid_masks: (``np.ndarray | None``, ``None``) with shape (H, W)
                For some test splits, the datasets provides outputs that look like:
                imgaes: (``PIL.Image``, ``PIL.Image``)
                disparities: (``None``, ``None``)
                Optionally, based on the dataset, it can return a ``mask`` as well:
                valid_masks: (``None``, ``None``)
        """
        super().__init__(root=root)
        self.transforms = transforms

        self._images = []  # type: ignore
        self._disparities = []  # type: ignore

    def _read_img(self, file_path: str) -> Image.Image:
        img = Image.open(file_path)
        if img.mode != "RGB":
            img = img.convert("RGB")
        return img

    def _scan_pairs(self, paths_left_pattern: str, paths_right_pattern: Optional[str] = None):

        left_paths = list(sorted(glob(paths_left_pattern)))

        right_paths: List[Union[None, str]]
        if paths_right_pattern:
            right_paths = list(sorted(glob(paths_right_pattern)))
        else:
            right_paths = list(None for _ in left_paths)

        if not left_paths:
            raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_left_pattern}")

        if not right_paths:
            raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_right_pattern}")

        if len(left_paths) != len(right_paths):
            raise ValueError(
                f"Found {len(left_paths)} left files but {len(right_paths)} right files using:\n "
                f"left pattern: {paths_left_pattern}\n"
                f"right pattern: {paths_right_pattern}\n"
            )

        paths = list((left, right) for left, right in zip(left_paths, right_paths))
        return paths

    @abstractmethod
    def _read_disparity(self, file_path: str) -> Tuple:
        # function that returns a disparity map and an occlusion map
        pass

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3 or 4-tuple with ``(img_left, img_right, disparity, Optional[valid_mask])`` where ``valid_mask``
                can be a numpy boolean mask of shape (H, W) if the dataset provides a file
                indicating which disparity pixels are valid. The disparity is a numpy array of
                shape (1, H, W) and the images are PIL images. ``disparity`` is None for
                datasets on which for ``split="test"`` the authors did not provide annotations.
        """
        img_left = self._read_img(self._images[index][0])
        img_right = self._read_img(self._images[index][1])

        dsp_map_left, valid_mask_left = self._read_disparity(self._disparities[index][0])
        dsp_map_right, valid_mask_right = self._read_disparity(self._disparities[index][1])

        imgs = (img_left, img_right)
        dsp_maps = (dsp_map_left, dsp_map_right)
        valid_masks = (valid_mask_left, valid_mask_right)

        if self.transforms is not None:
            (
                imgs,
                dsp_maps,
                valid_masks,
            ) = self.transforms(imgs, dsp_maps, valid_masks)

        if self._has_built_in_disparity_mask or valid_masks[0] is not None:
            return imgs[0], imgs[1], dsp_maps[0], valid_masks[0]
        else:
            return imgs[0], imgs[1], dsp_maps[0]

    def __len__(self) -> int:
        return len(self._images)


class CarlaStereo(StereoMatchingDataset):
    """
    Carla simulator data linked in the `CREStereo github repo <https://github.com/megvii-research/CREStereo>`_.

    The dataset is expected to have the following structure: ::

        root
            carla-highres
                trainingF
                    scene1
                        img0.png
                        img1.png
                        disp0GT.pfm
                        disp1GT.pfm
                        calib.txt
                    scene2
                        img0.png
                        img1.png
                        disp0GT.pfm
                        disp1GT.pfm
                        calib.txt
                    ...

    Args:
        root (string): Root directory where `carla-highres` is located.
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    def __init__(self, root: str, transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        root = Path(root) / "carla-highres"

        left_image_pattern = str(root / "trainingF" / "*" / "im0.png")
        right_image_pattern = str(root / "trainingF" / "*" / "im1.png")
        imgs = self._scan_pairs(left_image_pattern, right_image_pattern)
        self._images = imgs

        left_disparity_pattern = str(root / "trainingF" / "*" / "disp0GT.pfm")
        right_disparity_pattern = str(root / "trainingF" / "*" / "disp1GT.pfm")
        disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
        self._disparities = disparities

    def _read_disparity(self, file_path: str) -> Tuple:
        disparity_map = _read_pfm_file(file_path)
        disparity_map = np.abs(disparity_map)  # ensure that the disparity is positive
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            If a ``valid_mask`` is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
        """
        return super().__getitem__(index)


class Kitti2012Stereo(StereoMatchingDataset):
    """
    KITTI dataset from the `2012 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php>`_.
    Uses the RGB images for consistency with KITTI 2015.

    The dataset is expected to have the following structure: ::

        root
            Kitti2012
                testing
                    colored_0
                        1_10.png
                        2_10.png
                        ...
                    colored_1
                        1_10.png
                        2_10.png
                        ...
                training
                    colored_0
                        1_10.png
                        2_10.png
                        ...
                    colored_1
                        1_10.png
                        2_10.png
                        ...
                    disp_noc
                        1.png
                        2.png
                        ...
                    calib

    Args:
        root (string): Root directory where `Kitti2012` is located.
        split (string, optional): The dataset split of scenes, either "train" (default) or "test".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))

        root = Path(root) / "Kitti2012" / (split + "ing")

        left_img_pattern = str(root / "colored_0" / "*_10.png")
        right_img_pattern = str(root / "colored_1" / "*_10.png")
        self._images = self._scan_pairs(left_img_pattern, right_img_pattern)

        if split == "train":
            disparity_pattern = str(root / "disp_noc" / "*.png")
            self._disparities = self._scan_pairs(disparity_pattern, None)
        else:
            self._disparities = list((None, None) for _ in self._images)

    def _read_disparity(self, file_path: str) -> Tuple:
        # test split has no disparity maps
        if file_path is None:
            return None, None

        disparity_map = np.asarray(Image.open(file_path)) / 256.0
        # unsqueeze the disparity map into (C, H, W) format
        disparity_map = disparity_map[None, :, :]
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
            generate a valid mask.
            Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
        """
        return super().__getitem__(index)


class Kitti2015Stereo(StereoMatchingDataset):
    """
    KITTI dataset from the `2015 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php>`_.

    The dataset is expected to have the following structure: ::

        root
            Kitti2015
                testing
                    image_2
                        img1.png
                        img2.png
                        ...
                    image_3
                        img1.png
                        img2.png
                        ...
                training
                    image_2
                        img1.png
                        img2.png
                        ...
                    image_3
                        img1.png
                        img2.png
                        ...
                    disp_occ_0
                        img1.png
                        img2.png
                        ...
                    disp_occ_1
                        img1.png
                        img2.png
                        ...
                    calib

    Args:
        root (string): Root directory where `Kitti2015` is located.
        split (string, optional): The dataset split of scenes, either "train" (default) or "test".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))

        root = Path(root) / "Kitti2015" / (split + "ing")
        left_img_pattern = str(root / "image_2" / "*.png")
        right_img_pattern = str(root / "image_3" / "*.png")
        self._images = self._scan_pairs(left_img_pattern, right_img_pattern)

        if split == "train":
            left_disparity_pattern = str(root / "disp_occ_0" / "*.png")
            right_disparity_pattern = str(root / "disp_occ_1" / "*.png")
            self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
        else:
            self._disparities = list((None, None) for _ in self._images)

    def _read_disparity(self, file_path: str) -> Tuple:
        # test split has no disparity maps
        if file_path is None:
            return None, None

        disparity_map = np.asarray(Image.open(file_path)) / 256.0
        # unsqueeze the disparity map into (C, H, W) format
        disparity_map = disparity_map[None, :, :]
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
            generate a valid mask.
            Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
        """
        return super().__getitem__(index)
364
365


Ponku's avatar
Ponku committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
class CREStereo(StereoMatchingDataset):
    """Synthetic dataset used in training the `CREStereo <https://arxiv.org/pdf/2203.11483.pdf>`_ architecture.
    Dataset details on the official paper `repo <https://github.com/megvii-research/CREStereo>`_.

    The dataset is expected to have the following structure: ::

        root
            CREStereo
                tree
                    img1_left.jpg
                    img1_right.jpg
                    img1_left.disp.jpg
                    img1_right.disp.jpg
                    img2_left.jpg
                    img2_right.jpg
                    img2_left.disp.jpg
                    img2_right.disp.jpg
                    ...
                shapenet
                    img1_left.jpg
                    img1_right.jpg
                    img1_left.disp.jpg
                    img1_right.disp.jpg
                    ...
                reflective
                    img1_left.jpg
                    img1_right.jpg
                    img1_left.disp.jpg
                    img1_right.disp.jpg
                    ...
                hole
                    img1_left.jpg
                    img1_right.jpg
                    img1_left.disp.jpg
                    img1_right.disp.jpg
                    ...

    Args:
        root (str): Root directory of the dataset.
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(
        self,
        root: str,
        transforms: Optional[Callable] = None,
    ):
        super().__init__(root, transforms)

        root = Path(root) / "CREStereo"

        dirs = ["shapenet", "reflective", "tree", "hole"]

        for s in dirs:
            left_image_pattern = str(root / s / "*_left.jpg")
            right_image_pattern = str(root / s / "*_right.jpg")
            imgs = self._scan_pairs(left_image_pattern, right_image_pattern)
            self._images += imgs

            left_disparity_pattern = str(root / s / "*_left.disp.png")
            right_disparity_pattern = str(root / s / "*_right.disp.png")
            disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
            self._disparities += disparities

    def _read_disparity(self, file_path: str) -> Tuple:
        disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
        # unsqueeze the disparity map into (C, H, W) format
        disparity_map = disparity_map[None, :, :] / 256.0
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
            generate a valid mask.
        """
        return super().__getitem__(index)


Ponku's avatar
Ponku committed
454
455
456
457
458
459
460
461
class FallingThingsStereo(StereoMatchingDataset):
    """`FallingThings <https://research.nvidia.com/publication/2018-06_falling-things-synthetic-dataset-3d-object-detection-and-pose-estimation>`_ dataset.

    The dataset is expected to have the following structre: ::

        root
            FallingThings
                single
Ponku's avatar
Ponku committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
                    dir1
                        scene1
                            _object_settings.json
                            _camera_settings.json
                            image1.left.depth.png
                            image1.right.depth.png
                            image1.left.jpg
                            image1.right.jpg
                            image2.left.depth.png
                            image2.right.depth.png
                            image2.left.jpg
                            image2.right
                            ...
                        scene2
Ponku's avatar
Ponku committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
                    ...
                mixed
                    scene1
                        _object_settings.json
                        _camera_settings.json
                        image1.left.depth.png
                        image1.right.depth.png
                        image1.left.jpg
                        image1.right.jpg
                        image2.left.depth.png
                        image2.right.depth.png
                        image2.left.jpg
                        image2.right
                        ...
                    scene2
                    ...

    Args:
        root (string): Root directory where FallingThings is located.
        variant (string): Which variant to use. Either "single", "mixed", or "both".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    def __init__(self, root: str, variant: str = "single", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        root = Path(root) / "FallingThings"

        verify_str_arg(variant, "variant", valid_values=("single", "mixed", "both"))

        variants = {
            "single": ["single"],
            "mixed": ["mixed"],
            "both": ["single", "mixed"],
        }[variant]

Ponku's avatar
Ponku committed
512
513
514
515
516
        split_prefix = {
            "single": Path("*") / "*",
            "mixed": Path("*"),
        }

Ponku's avatar
Ponku committed
517
        for s in variants:
Ponku's avatar
Ponku committed
518
519
            left_img_pattern = str(root / s / split_prefix[s] / "*.left.jpg")
            right_img_pattern = str(root / s / split_prefix[s] / "*.right.jpg")
Ponku's avatar
Ponku committed
520
521
            self._images += self._scan_pairs(left_img_pattern, right_img_pattern)

Ponku's avatar
Ponku committed
522
523
            left_disparity_pattern = str(root / s / split_prefix[s] / "*.left.depth.png")
            right_disparity_pattern = str(root / s / split_prefix[s] / "*.right.depth.png")
Ponku's avatar
Ponku committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
            self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern)

    def _read_disparity(self, file_path: str) -> Tuple:
        # (H, W) image
        depth = np.asarray(Image.open(file_path))
        # as per https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt
        # in order to extract disparity from depth maps
        camera_settings_path = Path(file_path).parent / "_camera_settings.json"
        with open(camera_settings_path, "r") as f:
            # inverse of depth-from-disparity equation: depth = (baseline * focal) / (disparity * pixel_constatnt)
            intrinsics = json.load(f)
            focal = intrinsics["camera_settings"][0]["intrinsic_settings"]["fx"]
            baseline, pixel_constant = 6, 100  # pixel constant is inverted
            disparity_map = (baseline * focal * pixel_constant) / depth.astype(np.float32)
            # unsqueeze disparity to (C, H, W)
            disparity_map = disparity_map[None, :, :]
            valid_mask = None
            return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            If a ``valid_mask`` is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
        """
        return super().__getitem__(index)


558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
class SceneFlowStereo(StereoMatchingDataset):
    """Dataset interface for `Scene Flow <https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html>`_ datasets.
    This interface provides access to the `FlyingThings3D, `Monkaa` and `Driving` datasets.

    The dataset is expected to have the following structre: ::

        root
            SceneFlow
                Monkaa
                    frames_cleanpass
                        scene1
                            left
                                img1.png
                                img2.png
                            right
                                img1.png
                                img2.png
                        scene2
                            left
                                img1.png
                                img2.png
                            right
                                img1.png
                                img2.png
                    frames_finalpass
                        scene1
                            left
                                img1.png
                                img2.png
                            right
                                img1.png
                                img2.png
                        ...
                        ...
                    disparity
                        scene1
                            left
                                img1.pfm
                                img2.pfm
                            right
                                img1.pfm
                                img2.pfm
                FlyingThings3D
                    ...
                    ...

    Args:
        root (string): Root directory where SceneFlow is located.
        variant (string): Which dataset variant to user, "FlyingThings3D" (default), "Monkaa" or "Driving".
        pass_name (string): Which pass to use, "clean" (default), "final" or "both".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.

    """

    def __init__(
        self,
        root: str,
        variant: str = "FlyingThings3D",
        pass_name: str = "clean",
        transforms: Optional[Callable] = None,
    ):
        super().__init__(root, transforms)

        root = Path(root) / "SceneFlow"

        verify_str_arg(variant, "variant", valid_values=("FlyingThings3D", "Driving", "Monkaa"))
        verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))

        passes = {
            "clean": ["frames_cleanpass"],
            "final": ["frames_finalpass"],
            "both": ["frames_cleanpass", "frames_finalpass"],
        }[pass_name]

        root = root / variant

Ponku's avatar
Ponku committed
634
635
636
637
638
639
        prefix_directories = {
            "Monkaa": Path("*"),
            "FlyingThings3D": Path("*") / "*" / "*",
            "Driving": Path("*") / "*" / "*",
        }

640
        for p in passes:
Ponku's avatar
Ponku committed
641
642
            left_image_pattern = str(root / p / prefix_directories[variant] / "left" / "*.png")
            right_image_pattern = str(root / p / prefix_directories[variant] / "right" / "*.png")
643
644
            self._images += self._scan_pairs(left_image_pattern, right_image_pattern)

Ponku's avatar
Ponku committed
645
646
            left_disparity_pattern = str(root / "disparity" / prefix_directories[variant] / "left" / "*.pfm")
            right_disparity_pattern = str(root / "disparity" / prefix_directories[variant] / "right" / "*.pfm")
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
            self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern)

    def _read_disparity(self, file_path: str) -> Tuple:
        disparity_map = _read_pfm_file(file_path)
        disparity_map = np.abs(disparity_map)  # ensure that the disparity is positive
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            If a ``valid_mask`` is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
        """
        return super().__getitem__(index)
Ponku's avatar
Ponku committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789


class SintelStereo(StereoMatchingDataset):
    """Sintel `Stereo Dataset <http://sintel.is.tue.mpg.de/stereo>`_.

    The dataset is expected to have the following structure: ::

        root
            Sintel
                training
                    final_left
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...
                    final_right
                        scene2
                            img1.png
                            img2.png
                            ...
                        ...
                    disparities
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...
                    occlusions
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...
                    outofframe
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...

    Args:
        root (string): Root directory where Sintel Stereo is located.
        pass_name (string): The name of the pass to use, either "final", "clean" or "both".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, pass_name: str = "final", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(pass_name, "pass_name", valid_values=("final", "clean", "both"))

        root = Path(root) / "Sintel"
        pass_names = {
            "final": ["final"],
            "clean": ["clean"],
            "both": ["final", "clean"],
        }[pass_name]

        for p in pass_names:
            left_img_pattern = str(root / "training" / f"{p}_left" / "*" / "*.png")
            right_img_pattern = str(root / "training" / f"{p}_right" / "*" / "*.png")
            self._images += self._scan_pairs(left_img_pattern, right_img_pattern)

            disparity_pattern = str(root / "training" / "disparities" / "*" / "*.png")
            self._disparities += self._scan_pairs(disparity_pattern, None)

    def _get_occlussion_mask_paths(self, file_path: str) -> Tuple[str, str]:
        # helper function to get the occlusion mask paths
        # a path will look like  .../.../.../training/disparities/scene1/img1.png
        # we want to get something like .../.../.../training/occlusions/scene1/img1.png
        fpath = Path(file_path)
        basename = fpath.name
        scenedir = fpath.parent
        # the parent of the scenedir is actually the disparity dir
        sampledir = scenedir.parent.parent

        occlusion_path = str(sampledir / "occlusions" / scenedir.name / basename)
        outofframe_path = str(sampledir / "outofframe" / scenedir.name / basename)

        if not os.path.exists(occlusion_path):
            raise FileNotFoundError(f"Occlusion mask {occlusion_path} does not exist")

        if not os.path.exists(outofframe_path):
            raise FileNotFoundError(f"Out of frame mask {outofframe_path} does not exist")

        return occlusion_path, outofframe_path

    def _read_disparity(self, file_path: str) -> Tuple:
        if file_path is None:
            return None, None

        # disparity decoding as per Sintel instructions in the README provided with the dataset
        disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
        r, g, b = np.split(disparity_map, 3, axis=-1)
        disparity_map = r * 4 + g / (2**6) + b / (2**14)
        # reshape into (C, H, W) format
        disparity_map = np.transpose(disparity_map, (2, 0, 1))
        # find the appropiate file paths
        occlued_mask_path, out_of_frame_mask_path = self._get_occlussion_mask_paths(file_path)
        # occlusion masks
        valid_mask = np.asarray(Image.open(occlued_mask_path)) == 0
        # out of frame masks
        off_mask = np.asarray(Image.open(out_of_frame_mask_path)) == 0
        # combine the masks together
        valid_mask = np.logical_and(off_mask, valid_mask)
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images whilst
            the valid_mask is a numpy array of shape (H, W).
        """
        return super().__getitem__(index)
Ponku's avatar
Ponku committed
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858


class InStereo2k(StereoMatchingDataset):
    """`InStereo2k <https://github.com/YuhuaXu/StereoDataset>`_ dataset.

    The dataset is expected to have the following structre: ::

        root
            InStereo2k
                train
                    scene1
                        left.png
                        right.png
                        left_disp.png
                        right_disp.png
                        ...
                    scene2
                    ...
                test
                    scene1
                        left.png
                        right.png
                        left_disp.png
                        right_disp.png
                        ...
                    scene2
                    ...

    Args:
        root (string): Root directory where InStereo2k is located.
        split (string): Either "train" or "test".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        root = Path(root) / "InStereo2k" / split

        verify_str_arg(split, "split", valid_values=("train", "test"))

        left_img_pattern = str(root / "*" / "left.png")
        right_img_pattern = str(root / "*" / "right.png")
        self._images = self._scan_pairs(left_img_pattern, right_img_pattern)

        left_disparity_pattern = str(root / "*" / "left_disp.png")
        right_disparity_pattern = str(root / "*" / "right_disp.png")
        self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)

    def _read_disparity(self, file_path: str) -> Tuple:
        disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
        # unsqueeze disparity to (C, H, W)
        disparity_map = disparity_map[None, :, :] / 1024.0
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            If a ``valid_mask`` is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
        """
        return super().__getitem__(index)
Ponku's avatar
Ponku committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958


class ETH3DStereo(StereoMatchingDataset):
    """ETH3D `Low-Res Two-View <https://www.eth3d.net/datasets>`_ dataset.

    The dataset is expected to have the following structure: ::

        root
            ETH3D
                two_view_training
                    scene1
                        im1.png
                        im0.png
                        images.txt
                        cameras.txt
                        calib.txt
                    scene2
                        im1.png
                        im0.png
                        images.txt
                        cameras.txt
                        calib.txt
                    ...
                two_view_training_gt
                    scene1
                        disp0GT.pfm
                        mask0nocc.png
                    scene2
                        disp0GT.pfm
                        mask0nocc.png
                    ...
                two_view_testing
                    scene1
                        im1.png
                        im0.png
                        images.txt
                        cameras.txt
                        calib.txt
                    scene2
                        im1.png
                        im0.png
                        images.txt
                        cameras.txt
                        calib.txt
                    ...

    Args:
        root (string): Root directory of the ETH3D Dataset.
        split (string, optional): The dataset split of scenes, either "train" (default) or "test".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))

        root = Path(root) / "ETH3D"

        img_dir = "two_view_training" if split == "train" else "two_view_test"
        anot_dir = "two_view_training_gt"

        left_img_pattern = str(root / img_dir / "*" / "im0.png")
        right_img_pattern = str(root / img_dir / "*" / "im1.png")
        self._images = self._scan_pairs(left_img_pattern, right_img_pattern)

        if split == "test":
            self._disparities = list((None, None) for _ in self._images)
        else:
            disparity_pattern = str(root / anot_dir / "*" / "disp0GT.pfm")
            self._disparities = self._scan_pairs(disparity_pattern, None)

    def _read_disparity(self, file_path: str) -> Tuple:
        # test split has no disparity maps
        if file_path is None:
            return None, None

        disparity_map = _read_pfm_file(file_path)
        disparity_map = np.abs(disparity_map)  # ensure that the disparity is positive
        mask_path = Path(file_path).parent / "mask0nocc.png"
        valid_mask = Image.open(mask_path)
        valid_mask = np.asarray(valid_mask).astype(bool)
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
            generate a valid mask.
            Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
        """
        return super().__getitem__(index)