_stereo_matching.py 22.6 KB
Newer Older
1
import functools
Ponku's avatar
Ponku committed
2
import os
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from abc import ABC, abstractmethod
from glob import glob
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union

import numpy as np
from PIL import Image

from .utils import _read_pfm, verify_str_arg
from .vision import VisionDataset

__all__ = ()

_read_pfm_file = functools.partial(_read_pfm, slice_channels=1)


class StereoMatchingDataset(ABC, VisionDataset):
    """Base interface for Stereo matching datasets"""

    _has_built_in_disparity_mask = False

    def __init__(self, root: str, transforms: Optional[Callable] = None):
        """
        Args:
            root(str): Root directory of the dataset.
            transforms(callable, optional): A function/transform that takes in Tuples of
                (images, disparities, valid_masks) and returns a transformed version of each of them.
                images is a Tuple of (``PIL.Image``, ``PIL.Image``)
                disparities is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (1, H, W)
                valid_masks is a Tuple of (``np.ndarray``, ``np.ndarray``) with shape (H, W)
                In some cases, when a dataset does not provide disparities, the ``disparities`` and
                ``valid_masks`` can be Tuples containing None values.
                For training splits generally the datasets provide a minimal guarantee of
                images: (``PIL.Image``, ``PIL.Image``)
                disparities: (``np.ndarray``, ``None``) with shape (1, H, W)
                Optionally, based on the dataset, it can return a ``mask`` as well:
                valid_masks: (``np.ndarray | None``, ``None``) with shape (H, W)
                For some test splits, the datasets provides outputs that look like:
                imgaes: (``PIL.Image``, ``PIL.Image``)
                disparities: (``None``, ``None``)
                Optionally, based on the dataset, it can return a ``mask`` as well:
                valid_masks: (``None``, ``None``)
        """
        super().__init__(root=root)
        self.transforms = transforms

        self._images = []  # type: ignore
        self._disparities = []  # type: ignore

    def _read_img(self, file_path: str) -> Image.Image:
        img = Image.open(file_path)
        if img.mode != "RGB":
            img = img.convert("RGB")
        return img

    def _scan_pairs(self, paths_left_pattern: str, paths_right_pattern: Optional[str] = None):

        left_paths = list(sorted(glob(paths_left_pattern)))

        right_paths: List[Union[None, str]]
        if paths_right_pattern:
            right_paths = list(sorted(glob(paths_right_pattern)))
        else:
            right_paths = list(None for _ in left_paths)

        if not left_paths:
            raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_left_pattern}")

        if not right_paths:
            raise FileNotFoundError(f"Could not find any files matching the patterns: {paths_right_pattern}")

        if len(left_paths) != len(right_paths):
            raise ValueError(
                f"Found {len(left_paths)} left files but {len(right_paths)} right files using:\n "
                f"left pattern: {paths_left_pattern}\n"
                f"right pattern: {paths_right_pattern}\n"
            )

        paths = list((left, right) for left, right in zip(left_paths, right_paths))
        return paths

    @abstractmethod
    def _read_disparity(self, file_path: str) -> Tuple:
        # function that returns a disparity map and an occlusion map
        pass

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3 or 4-tuple with ``(img_left, img_right, disparity, Optional[valid_mask])`` where ``valid_mask``
                can be a numpy boolean mask of shape (H, W) if the dataset provides a file
                indicating which disparity pixels are valid. The disparity is a numpy array of
                shape (1, H, W) and the images are PIL images. ``disparity`` is None for
                datasets on which for ``split="test"`` the authors did not provide annotations.
        """
        img_left = self._read_img(self._images[index][0])
        img_right = self._read_img(self._images[index][1])

        dsp_map_left, valid_mask_left = self._read_disparity(self._disparities[index][0])
        dsp_map_right, valid_mask_right = self._read_disparity(self._disparities[index][1])

        imgs = (img_left, img_right)
        dsp_maps = (dsp_map_left, dsp_map_right)
        valid_masks = (valid_mask_left, valid_mask_right)

        if self.transforms is not None:
            (
                imgs,
                dsp_maps,
                valid_masks,
            ) = self.transforms(imgs, dsp_maps, valid_masks)

        if self._has_built_in_disparity_mask or valid_masks[0] is not None:
            return imgs[0], imgs[1], dsp_maps[0], valid_masks[0]
        else:
            return imgs[0], imgs[1], dsp_maps[0]

    def __len__(self) -> int:
        return len(self._images)


class CarlaStereo(StereoMatchingDataset):
    """
    Carla simulator data linked in the `CREStereo github repo <https://github.com/megvii-research/CREStereo>`_.

    The dataset is expected to have the following structure: ::

        root
            carla-highres
                trainingF
                    scene1
                        img0.png
                        img1.png
                        disp0GT.pfm
                        disp1GT.pfm
                        calib.txt
                    scene2
                        img0.png
                        img1.png
                        disp0GT.pfm
                        disp1GT.pfm
                        calib.txt
                    ...

    Args:
        root (string): Root directory where `carla-highres` is located.
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    def __init__(self, root: str, transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        root = Path(root) / "carla-highres"

        left_image_pattern = str(root / "trainingF" / "*" / "im0.png")
        right_image_pattern = str(root / "trainingF" / "*" / "im1.png")
        imgs = self._scan_pairs(left_image_pattern, right_image_pattern)
        self._images = imgs

        left_disparity_pattern = str(root / "trainingF" / "*" / "disp0GT.pfm")
        right_disparity_pattern = str(root / "trainingF" / "*" / "disp1GT.pfm")
        disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
        self._disparities = disparities

    def _read_disparity(self, file_path: str) -> Tuple:
        disparity_map = _read_pfm_file(file_path)
        disparity_map = np.abs(disparity_map)  # ensure that the disparity is positive
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            If a ``valid_mask`` is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
        """
        return super().__getitem__(index)


class Kitti2012Stereo(StereoMatchingDataset):
    """
    KITTI dataset from the `2012 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php>`_.
    Uses the RGB images for consistency with KITTI 2015.

    The dataset is expected to have the following structure: ::

        root
            Kitti2012
                testing
                    colored_0
                        1_10.png
                        2_10.png
                        ...
                    colored_1
                        1_10.png
                        2_10.png
                        ...
                training
                    colored_0
                        1_10.png
                        2_10.png
                        ...
                    colored_1
                        1_10.png
                        2_10.png
                        ...
                    disp_noc
                        1.png
                        2.png
                        ...
                    calib

    Args:
        root (string): Root directory where `Kitti2012` is located.
        split (string, optional): The dataset split of scenes, either "train" (default) or "test".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))

        root = Path(root) / "Kitti2012" / (split + "ing")

        left_img_pattern = str(root / "colored_0" / "*_10.png")
        right_img_pattern = str(root / "colored_1" / "*_10.png")
        self._images = self._scan_pairs(left_img_pattern, right_img_pattern)

        if split == "train":
            disparity_pattern = str(root / "disp_noc" / "*.png")
            self._disparities = self._scan_pairs(disparity_pattern, None)
        else:
            self._disparities = list((None, None) for _ in self._images)

    def _read_disparity(self, file_path: str) -> Tuple:
        # test split has no disparity maps
        if file_path is None:
            return None, None

        disparity_map = np.asarray(Image.open(file_path)) / 256.0
        # unsqueeze the disparity map into (C, H, W) format
        disparity_map = disparity_map[None, :, :]
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
            generate a valid mask.
            Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
        """
        return super().__getitem__(index)


class Kitti2015Stereo(StereoMatchingDataset):
    """
    KITTI dataset from the `2015 stereo evaluation benchmark <http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php>`_.

    The dataset is expected to have the following structure: ::

        root
            Kitti2015
                testing
                    image_2
                        img1.png
                        img2.png
                        ...
                    image_3
                        img1.png
                        img2.png
                        ...
                training
                    image_2
                        img1.png
                        img2.png
                        ...
                    image_3
                        img1.png
                        img2.png
                        ...
                    disp_occ_0
                        img1.png
                        img2.png
                        ...
                    disp_occ_1
                        img1.png
                        img2.png
                        ...
                    calib

    Args:
        root (string): Root directory where `Kitti2015` is located.
        split (string, optional): The dataset split of scenes, either "train" (default) or "test".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, split: str = "train", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(split, "split", valid_values=("train", "test"))

        root = Path(root) / "Kitti2015" / (split + "ing")
        left_img_pattern = str(root / "image_2" / "*.png")
        right_img_pattern = str(root / "image_3" / "*.png")
        self._images = self._scan_pairs(left_img_pattern, right_img_pattern)

        if split == "train":
            left_disparity_pattern = str(root / "disp_occ_0" / "*.png")
            right_disparity_pattern = str(root / "disp_occ_1" / "*.png")
            self._disparities = self._scan_pairs(left_disparity_pattern, right_disparity_pattern)
        else:
            self._disparities = list((None, None) for _ in self._images)

    def _read_disparity(self, file_path: str) -> Tuple:
        # test split has no disparity maps
        if file_path is None:
            return None, None

        disparity_map = np.asarray(Image.open(file_path)) / 256.0
        # unsqueeze the disparity map into (C, H, W) format
        disparity_map = disparity_map[None, :, :]
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            ``valid_mask`` is implicitly ``None`` if the ``transforms`` parameter does not
            generate a valid mask.
            Both ``disparity`` and ``valid_mask`` are ``None`` if the dataset split is test.
        """
        return super().__getitem__(index)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468


class SceneFlowStereo(StereoMatchingDataset):
    """Dataset interface for `Scene Flow <https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html>`_ datasets.
    This interface provides access to the `FlyingThings3D, `Monkaa` and `Driving` datasets.

    The dataset is expected to have the following structre: ::

        root
            SceneFlow
                Monkaa
                    frames_cleanpass
                        scene1
                            left
                                img1.png
                                img2.png
                            right
                                img1.png
                                img2.png
                        scene2
                            left
                                img1.png
                                img2.png
                            right
                                img1.png
                                img2.png
                    frames_finalpass
                        scene1
                            left
                                img1.png
                                img2.png
                            right
                                img1.png
                                img2.png
                        ...
                        ...
                    disparity
                        scene1
                            left
                                img1.pfm
                                img2.pfm
                            right
                                img1.pfm
                                img2.pfm
                FlyingThings3D
                    ...
                    ...

    Args:
        root (string): Root directory where SceneFlow is located.
        variant (string): Which dataset variant to user, "FlyingThings3D" (default), "Monkaa" or "Driving".
        pass_name (string): Which pass to use, "clean" (default), "final" or "both".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.

    """

    def __init__(
        self,
        root: str,
        variant: str = "FlyingThings3D",
        pass_name: str = "clean",
        transforms: Optional[Callable] = None,
    ):
        super().__init__(root, transforms)

        root = Path(root) / "SceneFlow"

        verify_str_arg(variant, "variant", valid_values=("FlyingThings3D", "Driving", "Monkaa"))
        verify_str_arg(pass_name, "pass_name", valid_values=("clean", "final", "both"))

        passes = {
            "clean": ["frames_cleanpass"],
            "final": ["frames_finalpass"],
            "both": ["frames_cleanpass", "frames_finalpass"],
        }[pass_name]

        root = root / variant

        for p in passes:
            left_image_pattern = str(root / p / "*" / "left" / "*.png")
            right_image_pattern = str(root / p / "*" / "right" / "*.png")
            self._images += self._scan_pairs(left_image_pattern, right_image_pattern)

            left_disparity_pattern = str(root / "disparity" / "*" / "left" / "*.pfm")
            right_disparity_pattern = str(root / "disparity" / "*" / "right" / "*.pfm")
            self._disparities += self._scan_pairs(left_disparity_pattern, right_disparity_pattern)

    def _read_disparity(self, file_path: str) -> Tuple:
        disparity_map = _read_pfm_file(file_path)
        disparity_map = np.abs(disparity_map)  # ensure that the disparity is positive
        valid_mask = None
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 3-tuple with ``(img_left, img_right, disparity)``.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images.
            If a ``valid_mask`` is generated within the ``transforms`` parameter,
            a 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
        """
        return super().__getitem__(index)
Ponku's avatar
Ponku committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590


class SintelStereo(StereoMatchingDataset):
    """Sintel `Stereo Dataset <http://sintel.is.tue.mpg.de/stereo>`_.

    The dataset is expected to have the following structure: ::

        root
            Sintel
                training
                    final_left
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...
                    final_right
                        scene2
                            img1.png
                            img2.png
                            ...
                        ...
                    disparities
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...
                    occlusions
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...
                    outofframe
                        scene1
                            img1.png
                            img2.png
                            ...
                        ...

    Args:
        root (string): Root directory where Sintel Stereo is located.
        pass_name (string): The name of the pass to use, either "final", "clean" or "both".
        transforms (callable, optional): A function/transform that takes in a sample and returns a transformed version.
    """

    _has_built_in_disparity_mask = True

    def __init__(self, root: str, pass_name: str = "final", transforms: Optional[Callable] = None):
        super().__init__(root, transforms)

        verify_str_arg(pass_name, "pass_name", valid_values=("final", "clean", "both"))

        root = Path(root) / "Sintel"
        pass_names = {
            "final": ["final"],
            "clean": ["clean"],
            "both": ["final", "clean"],
        }[pass_name]

        for p in pass_names:
            left_img_pattern = str(root / "training" / f"{p}_left" / "*" / "*.png")
            right_img_pattern = str(root / "training" / f"{p}_right" / "*" / "*.png")
            self._images += self._scan_pairs(left_img_pattern, right_img_pattern)

            disparity_pattern = str(root / "training" / "disparities" / "*" / "*.png")
            self._disparities += self._scan_pairs(disparity_pattern, None)

    def _get_occlussion_mask_paths(self, file_path: str) -> Tuple[str, str]:
        # helper function to get the occlusion mask paths
        # a path will look like  .../.../.../training/disparities/scene1/img1.png
        # we want to get something like .../.../.../training/occlusions/scene1/img1.png
        fpath = Path(file_path)
        basename = fpath.name
        scenedir = fpath.parent
        # the parent of the scenedir is actually the disparity dir
        sampledir = scenedir.parent.parent

        occlusion_path = str(sampledir / "occlusions" / scenedir.name / basename)
        outofframe_path = str(sampledir / "outofframe" / scenedir.name / basename)

        if not os.path.exists(occlusion_path):
            raise FileNotFoundError(f"Occlusion mask {occlusion_path} does not exist")

        if not os.path.exists(outofframe_path):
            raise FileNotFoundError(f"Out of frame mask {outofframe_path} does not exist")

        return occlusion_path, outofframe_path

    def _read_disparity(self, file_path: str) -> Tuple:
        if file_path is None:
            return None, None

        # disparity decoding as per Sintel instructions in the README provided with the dataset
        disparity_map = np.asarray(Image.open(file_path), dtype=np.float32)
        r, g, b = np.split(disparity_map, 3, axis=-1)
        disparity_map = r * 4 + g / (2**6) + b / (2**14)
        # reshape into (C, H, W) format
        disparity_map = np.transpose(disparity_map, (2, 0, 1))
        # find the appropiate file paths
        occlued_mask_path, out_of_frame_mask_path = self._get_occlussion_mask_paths(file_path)
        # occlusion masks
        valid_mask = np.asarray(Image.open(occlued_mask_path)) == 0
        # out of frame masks
        off_mask = np.asarray(Image.open(out_of_frame_mask_path)) == 0
        # combine the masks together
        valid_mask = np.logical_and(off_mask, valid_mask)
        return disparity_map, valid_mask

    def __getitem__(self, index: int) -> Tuple:
        """Return example at given index.

        Args:
            index(int): The index of the example to retrieve

        Returns:
            tuple: A 4-tuple with ``(img_left, img_right, disparity, valid_mask)`` is returned.
            The disparity is a numpy array of shape (1, H, W) and the images are PIL images whilst
            the valid_mask is a numpy array of shape (H, W).
        """
        return super().__getitem__(index)