kitti.py 5.47 KB
Newer Older
Prabhat Roy's avatar
Prabhat Roy committed
1
2
3
4
5
6
7
8
9
10
11
import csv
import os
from typing import Any, Callable, List, Optional, Tuple

from PIL import Image

from .utils import download_and_extract_archive
from .vision import VisionDataset


class Kitti(VisionDataset):
Nicolas Hug's avatar
Nicolas Hug committed
12
13
14
    """`KITTI <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark>`_ Dataset.

    It corresponds to the "left color images of object" dataset, for object detection.
Prabhat Roy's avatar
Prabhat Roy committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

    Args:
        root (string): Root directory where images are downloaded to.
            Expects the following folder structure if download=False:

            .. code::

                <root>
                    └── Kitti
                        └─ raw
                            ├── training
                            |   ├── image_2
                            |   └── label_2
                            └── testing
                                └── image_2
        train (bool, optional): Use ``train`` split if true, else ``test`` split.
            Defaults to ``train``.
        transform (callable, optional): A function/transform that takes in a PIL image
33
            and returns a transformed version. E.g, ``transforms.PILToTensor``
Prabhat Roy's avatar
Prabhat Roy committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        transforms (callable, optional): A function/transform that takes input sample
            and its target as entry and returns a transformed version.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """

    data_url = "https://s3.eu-central-1.amazonaws.com/avg-kitti/"
    resources = [
        "data_object_image_2.zip",
        "data_object_label_2.zip",
    ]
    image_dir_name = "image_2"
    labels_dir_name = "label_2"

    def __init__(
        self,
        root: str,
        train: bool = True,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        transforms: Optional[Callable] = None,
        download: bool = False,
    ):
        super().__init__(
            root,
            transform=transform,
            target_transform=target_transform,
            transforms=transforms,
        )
        self.images = []
        self.targets = []
        self.root = root
        self.train = train
        self._location = "training" if self.train else "testing"

        if download:
            self.download()
        if not self._check_exists():
76
            raise RuntimeError("Dataset not found. You may use download=True to download it.")
Prabhat Roy's avatar
Prabhat Roy committed
77
78
79
80
81
82
83

        image_dir = os.path.join(self._raw_folder, self._location, self.image_dir_name)
        if self.train:
            labels_dir = os.path.join(self._raw_folder, self._location, self.labels_dir_name)
        for img_file in os.listdir(image_dir):
            self.images.append(os.path.join(image_dir, img_file))
            if self.train:
84
                self.targets.append(os.path.join(labels_dir, f"{img_file.split('.')[0]}.txt"))
Prabhat Roy's avatar
Prabhat Roy committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """Get item at a given index.

        Args:
            index (int): Index
        Returns:
            tuple: (image, target), where
            target is a list of dictionaries with the following keys:

            - type: str
            - truncated: float
            - occluded: int
            - alpha: float
            - bbox: float[4]
            - dimensions: float[3]
            - locations: float[3]
            - rotation_y: float

        """
        image = Image.open(self.images[index])
        target = self._parse_target(index) if self.train else None
        if self.transforms:
            image, target = self.transforms(image, target)
        return image, target

    def _parse_target(self, index: int) -> List:
        target = []
        with open(self.targets[index]) as inp:
            content = csv.reader(inp, delimiter=" ")
            for line in content:
116
117
118
119
120
121
122
123
124
125
126
127
                target.append(
                    {
                        "type": line[0],
                        "truncated": float(line[1]),
                        "occluded": int(line[2]),
                        "alpha": float(line[3]),
                        "bbox": [float(x) for x in line[4:8]],
                        "dimensions": [float(x) for x in line[8:11]],
                        "location": [float(x) for x in line[11:14]],
                        "rotation_y": float(line[14]),
                    }
                )
Prabhat Roy's avatar
Prabhat Roy committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        return target

    def __len__(self) -> int:
        return len(self.images)

    @property
    def _raw_folder(self) -> str:
        return os.path.join(self.root, self.__class__.__name__, "raw")

    def _check_exists(self) -> bool:
        """Check if the data directory exists."""
        folders = [self.image_dir_name]
        if self.train:
            folders.append(self.labels_dir_name)
142
        return all(os.path.isdir(os.path.join(self._raw_folder, self._location, fname)) for fname in folders)
Prabhat Roy's avatar
Prabhat Roy committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    def download(self) -> None:
        """Download the KITTI data if it doesn't exist already."""

        if self._check_exists():
            return

        os.makedirs(self._raw_folder, exist_ok=True)

        # download files
        for fname in self.resources:
            download_and_extract_archive(
                url=f"{self.data_url}{fname}",
                download_root=self._raw_folder,
                filename=fname,
            )