ssd.py 28.7 KB
Newer Older
1
2
3
4
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple

5
6
7
8
9
import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ...ops import boxes as box_ops
10
from ...transforms._presets import ObjectDetection
11
from ...utils import _log_api_usage_once
12
13
14
15
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
from ..vgg import VGG, VGG16_Weights, vgg16
16
17
18
19
20
21
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform


22
23
24
25
26
27
28
29
30
31
32
33
34
__all__ = [
    "SSD300_VGG16_Weights",
    "ssd300_vgg16",
]


class SSD300_VGG16_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
        transforms=ObjectDetection,
        meta={
            "num_params": 35641826,
            "categories": _COCO_CATEGORIES,
35
            "min_size": (1, 1),
36
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16",
37
38
39
            "metrics": {
                "box_map": 25.1,
            },
40
41
42
        },
    )
    DEFAULT = COCO_V1
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


def _xavier_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.xavier_uniform_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        super().__init__()
        self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = SSDRegressionHead(in_channels, num_anchors)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
61
62
            "bbox_regression": self.regression_head(x),
            "cls_logits": self.classification_head(x),
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        }


class SSDScoringHead(nn.Module):
    def __init__(self, module_list: nn.ModuleList, num_columns: int):
        super().__init__()
        self.module_list = module_list
        self.num_columns = num_columns

    def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
        """
        This is equivalent to self.module_list[idx](x),
        but torchscript doesn't support this yet
        """
        num_blocks = len(self.module_list)
        if idx < 0:
            idx += num_blocks
        out = x
81
        for i, module in enumerate(self.module_list):
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
            if i == idx:
                out = module(x)
        return out

    def forward(self, x: List[Tensor]) -> Tensor:
        all_results = []

        for i, features in enumerate(x):
            results = self._get_result_from_module_list(features, i)

            # Permute output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = results.shape
            results = results.view(N, -1, self.num_columns, H, W)
            results = results.permute(0, 3, 4, 1, 2)
            results = results.reshape(N, -1, self.num_columns)  # Size=(N, HWA, K)

            all_results.append(results)

        return torch.cat(all_results, dim=1)


class SSDClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
        _xavier_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
        _xavier_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSD(nn.Module):
    """
    Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
142
143
    follows, where ``N`` is the number of detections:

144
145
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
146
147
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
148
149
150
151
152
153
154
155
156

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute with the list of the output channels of
            each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
        anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
            set of feature maps.
        size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
            to the backbone.
157
        num_classes (int): number of output classes of the model (including the background).
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
            a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        topk_candidates (int): Number of best detections to keep before NMS.
        positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
            proposals used during the training of the classification head. It is used to estimate the negative to
            positive ratio.
    """
175

176
    __annotations__ = {
177
178
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
179
180
    }

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def __init__(
        self,
        backbone: nn.Module,
        anchor_generator: DefaultBoxGenerator,
        size: Tuple[int, int],
        num_classes: int,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        head: Optional[nn.Module] = None,
        score_thresh: float = 0.01,
        nms_thresh: float = 0.45,
        detections_per_img: int = 200,
        iou_thresh: float = 0.5,
        topk_candidates: int = 400,
        positive_fraction: float = 0.25,
196
        **kwargs: Any,
197
    ):
198
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
199
        _log_api_usage_once(self)
200
201
202
203
204

        self.backbone = backbone

        self.anchor_generator = anchor_generator

205
        self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
206
207

        if head is None:
208
            if hasattr(backbone, "out_channels"):
209
210
211
212
                out_channels = backbone.out_channels
            else:
                out_channels = det_utils.retrieve_out_channels(backbone, size)

213
214
215
216
            if len(out_channels) != len(anchor_generator.aspect_ratios):
                raise ValueError(
                    f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})"
                )
217
218
219
220
221
222
223
224
225
226
227

            num_anchors = self.anchor_generator.num_anchors_per_location()
            head = SSDHead(out_channels, num_anchors, num_classes)
        self.head = head

        self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
228
        self.transform = GeneralizedRCNNTransform(
229
            min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size, **kwargs
230
        )
231
232
233
234
235
236
237
238
239
240
241

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates
        self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
242
243
244
    def eager_outputs(
        self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
245
246
247
248
249
        if self.training:
            return losses

        return detections

250
251
252
253
254
255
256
257
258
    def compute_loss(
        self,
        targets: List[Dict[str, Tensor]],
        head_outputs: Dict[str, Tensor],
        anchors: List[Tensor],
        matched_idxs: List[Tensor],
    ) -> Dict[str, Tensor]:
        bbox_regression = head_outputs["bbox_regression"]
        cls_logits = head_outputs["cls_logits"]
259
260
261
262
263

        # Match original targets with default boxes
        num_foreground = 0
        bbox_loss = []
        cls_targets = []
264
265
266
267
268
269
270
        for (
            targets_per_image,
            bbox_regression_per_image,
            cls_logits_per_image,
            anchors_per_image,
            matched_idxs_per_image,
        ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
271
272
273
274
275
276
            # produce the matching between boxes and targets
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
            num_foreground += foreground_matched_idxs_per_image.numel()

            # Calculate regression loss
277
            matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
278
279
280
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
281
282
283
            bbox_loss.append(
                torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
            )
284
285

            # Estimate ground truth for class targets
286
287
288
289
290
291
292
293
            gt_classes_target = torch.zeros(
                (cls_logits_per_image.size(0),),
                dtype=targets_per_image["labels"].dtype,
                device=targets_per_image["labels"].device,
            )
            gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
                foreground_matched_idxs_per_image
            ]
294
295
296
297
298
299
300
            cls_targets.append(gt_classes_target)

        bbox_loss = torch.stack(bbox_loss)
        cls_targets = torch.stack(cls_targets)

        # Calculate classification loss
        num_classes = cls_logits.size(-1)
301
302
303
        cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
            cls_targets.size()
        )
304
305
306
307
308
309

        # Hard Negative Sampling
        foreground_idxs = cls_targets > 0
        num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
        # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
        negative_loss = cls_loss.clone()
310
        negative_loss[foreground_idxs] = -float("inf")  # use -inf to detect positive values that creeped in the sample
311
312
313
314
315
316
        values, idx = negative_loss.sort(1, descending=True)
        # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
        background_idxs = idx.sort(1)[1] < num_negative

        N = max(1, num_foreground)
        return {
317
318
            "bbox_regression": bbox_loss.sum() / N,
            "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
319
320
        }

321
322
323
    def forward(
        self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
324
        if self.training:
325
            if targets is None:
326
327
328
329
330
331
332
333
334
335
336
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for target in targets:
                    boxes = target["boxes"]
                    if isinstance(boxes, torch.Tensor):
                        torch._assert(
                            len(boxes.shape) == 2 and boxes.shape[-1] == 4,
                            f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
                        )
                    else:
                        torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
337
338
339
340
341

        # get the original image sizes
        original_image_sizes: List[Tuple[int, int]] = []
        for img in images:
            val = img.shape[-2:]
342
343
344
345
            torch._assert(
                len(val) == 2,
                f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
            )
346
347
348
349
350
351
352
353
354
355
356
357
358
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
359
360
                    torch._assert(
                        False,
361
                        "All bounding boxes should have positive height and width."
362
                        f" Found invalid box {degen_bb} for target at index {target_idx}.",
363
                    )
364
365
366
367

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
368
            features = OrderedDict([("0", features)])
369
370
371
372
373
374
375
376
377
378
379
380
381

        features = list(features.values())

        # compute the ssd heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections: List[Dict[str, Tensor]] = []
        if self.training:
            matched_idxs = []
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            if targets is None:
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for anchors_per_image, targets_per_image in zip(anchors, targets):
                    if targets_per_image["boxes"].numel() == 0:
                        matched_idxs.append(
                            torch.full(
                                (anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device
                            )
                        )
                        continue

                    match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
                    matched_idxs.append(self.proposal_matcher(match_quality_matrix))

                losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
398
399
400
401
402
403
404
405
406
407
408
        else:
            detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        return self.eager_outputs(losses, detections)

409
410
411
412
413
    def postprocess_detections(
        self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
    ) -> List[Dict[str, Tensor]]:
        bbox_regression = head_outputs["bbox_regression"]
        pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

        num_classes = pred_scores.size(-1)
        device = pred_scores.device

        detections: List[Dict[str, Tensor]] = []

        for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
            boxes = self.box_coder.decode_single(boxes, anchors)
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            image_boxes = []
            image_scores = []
            image_labels = []
            for label in range(1, num_classes):
                score = scores[:, label]

                keep_idxs = score > self.score_thresh
                score = score[keep_idxs]
                box = boxes[keep_idxs]

                # keep only topk scoring predictions
435
                num_topk = det_utils._topk_min(score, self.topk_candidates, 0)
436
437
438
439
440
441
442
443
444
445
446
447
448
                score, idxs = score.topk(num_topk)
                box = box[idxs]

                image_boxes.append(box)
                image_scores.append(score)
                image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
449
450
451
452
453
454
455
456
457
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
458
459
460
461
        return detections


class SSDFeatureExtractorVGG(nn.Module):
462
    def __init__(self, backbone: nn.Module, highres: bool):
463
464
465
466
467
468
469
470
471
472
473
        super().__init__()

        _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))

        # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
        backbone[maxpool3_pos].ceil_mode = True

        # parameters used for L2 regularization + rescaling
        self.scale_weight = nn.Parameter(torch.ones(512) * 20)

        # Multiple Feature maps - page 4, Fig 2 of SSD paper
474
        self.features = nn.Sequential(*backbone[:maxpool4_pos])  # until conv4_3
475
476

        # SSD300 case - page 4, Fig 2 of SSD paper
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        extra = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(1024, 256, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # conv8_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(512, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # conv9_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv10_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv11_2
                    nn.ReLU(inplace=True),
                ),
            ]
        )
505
506
        if highres:
            # Additional layers for the SSD512 case. See page 11, footernote 5.
507
508
509
510
511
512
513
514
            extra.append(
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=4),  # conv12_2
                    nn.ReLU(inplace=True),
                )
            )
515
516
517
518
519
520
521
        _xavier_init(extra)

        fc = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False),  # add modified maxpool5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6),  # FC6 with atrous
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1),  # FC7
522
            nn.ReLU(inplace=True),
523
524
        )
        _xavier_init(fc)
525
526
527
528
529
530
531
        extra.insert(
            0,
            nn.Sequential(
                *backbone[maxpool4_pos:-1],  # until conv5_3, skip maxpool5
                fc,
            ),
        )
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # L2 regularization + Rescaling of 1st block's feature map
        x = self.features(x)
        rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
        output = [rescaled]

        # Calculating Feature maps for the rest blocks
        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


548
def _vgg_extractor(backbone: VGG, highres: bool, trainable_layers: int):
549
    backbone = backbone.features
550
    # Gather the indices of maxpools. These are the locations of output blocks.
551
    stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
552
553
554
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
555
556
557
558
    torch._assert(
        0 <= trainable_layers <= num_stages,
        f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}",
    )
559
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
560
561
562
563
564

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

565
    return SSDFeatureExtractorVGG(backbone, highres)
566
567


568
569
570
571
@handle_legacy_interface(
    weights=("pretrained", SSD300_VGG16_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", VGG16_Weights.IMAGENET1K_FEATURES),
)
572
def ssd300_vgg16(
573
574
    *,
    weights: Optional[SSD300_VGG16_Weights] = None,
575
    progress: bool = True,
576
577
    num_classes: Optional[int] = None,
    weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES,
578
579
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
580
) -> SSD:
581
582
    """The SSD300 model is based on the `SSD: Single Shot MultiBox Detector
    <https://arxiv.org/abs/1512.02325>`_ paper.
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
608
609
610

    Example:

611
        >>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT)
612
        >>> model.eval()
613
        >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
614
615
616
        >>> predictions = model(x)

    Args:
617
618
619
620
621
622
623
        weights (:class:`~torchvision.models.detection.SSD300_VGG16_Weights`, optional): The pretrained
                weights to use. See
                :class:`~torchvision.models.detection.SSD300_VGG16_Weights`
                below for more details, and possible values. By default, no
                pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr
            Default is True.
624
        num_classes (int, optional): number of output classes of the model (including the background)
625
626
        weights_backbone (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights for the
            backbone
627
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
628
629
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 4.
630
631
632
633
634
635
636
        **kwargs: parameters passed to the ``torchvision.models.detection.SSD``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssd.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.SSD300_VGG16_Weights
        :members:
637
    """
638
639
640
    weights = SSD300_VGG16_Weights.verify(weights)
    weights_backbone = VGG16_Weights.verify(weights_backbone)

641
    if "size" in kwargs:
642
643
644
645
646
647
648
        warnings.warn("The size of the model is already fixed; ignoring the parameter.")

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91
649

650
    trainable_backbone_layers = _validate_trainable_layers(
651
        weights is not None or weights_backbone is not None, trainable_backbone_layers, 5, 4
652
    )
653

654
    # Use custom backbones more appropriate for SSD
655
    backbone = vgg16(weights=weights_backbone, progress=progress)
656
    backbone = _vgg_extractor(backbone, False, trainable_backbone_layers)
657
658
659
660
661
    anchor_generator = DefaultBoxGenerator(
        [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
        scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        steps=[8, 16, 32, 64, 100, 300],
    )
662
663
664
665
666
667

    defaults = {
        # Rescale the input in a way compatible to the backbone
        "image_mean": [0.48235, 0.45882, 0.40784],
        "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0],  # undo the 0-1 scaling of toTensor
    }
668
    kwargs: Any = {**defaults, **kwargs}
669
    model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
670
671
672
673

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

674
    return model
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "ssd300_vgg16_coco": SSD300_VGG16_Weights.COCO_V1.url,
    }
)


backbone_urls = _ModelURLs(
    {
        # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses
        # the same input standardization method as the paper.
        # Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
        # Only the `features` weights have proper values, those on the `classifier` module are filled with nans.
        "vgg16_features": VGG16_Weights.IMAGENET1K_FEATURES.url,
    }
)