ssd.py 27.5 KB
Newer Older
1
2
3
4
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple

5
6
7
8
9
import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ...ops import boxes as box_ops
10
from ...transforms._presets import ObjectDetection, InterpolationMode
11
from ...utils import _log_api_usage_once
12
13
14
15
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
from ..vgg import VGG, VGG16_Weights, vgg16
16
17
18
19
20
21
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform


22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
__all__ = [
    "SSD300_VGG16_Weights",
    "ssd300_vgg16",
]


class SSD300_VGG16_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
        transforms=ObjectDetection,
        meta={
            "task": "image_object_detection",
            "architecture": "SSD",
            "publication_year": 2015,
            "num_params": 35641826,
            "size": (300, 300),
            "categories": _COCO_CATEGORIES,
            "interpolation": InterpolationMode.BILINEAR,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16",
            "map": 25.1,
        },
    )
    DEFAULT = COCO_V1
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


def _xavier_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.xavier_uniform_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        super().__init__()
        self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = SSDRegressionHead(in_channels, num_anchors)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
63
64
            "bbox_regression": self.regression_head(x),
            "cls_logits": self.classification_head(x),
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        }


class SSDScoringHead(nn.Module):
    def __init__(self, module_list: nn.ModuleList, num_columns: int):
        super().__init__()
        self.module_list = module_list
        self.num_columns = num_columns

    def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
        """
        This is equivalent to self.module_list[idx](x),
        but torchscript doesn't support this yet
        """
        num_blocks = len(self.module_list)
        if idx < 0:
            idx += num_blocks
        out = x
83
        for i, module in enumerate(self.module_list):
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            if i == idx:
                out = module(x)
        return out

    def forward(self, x: List[Tensor]) -> Tensor:
        all_results = []

        for i, features in enumerate(x):
            results = self._get_result_from_module_list(features, i)

            # Permute output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = results.shape
            results = results.view(N, -1, self.num_columns, H, W)
            results = results.permute(0, 3, 4, 1, 2)
            results = results.reshape(N, -1, self.num_columns)  # Size=(N, HWA, K)

            all_results.append(results)

        return torch.cat(all_results, dim=1)


class SSDClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
        _xavier_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
        _xavier_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSD(nn.Module):
    """
    Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
144
145
    follows, where ``N`` is the number of detections:

146
147
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
148
149
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
150
151
152
153
154
155
156
157
158

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute with the list of the output channels of
            each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
        anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
            set of feature maps.
        size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
            to the backbone.
159
        num_classes (int): number of output classes of the model (including the background).
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
            a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        topk_candidates (int): Number of best detections to keep before NMS.
        positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
            proposals used during the training of the classification head. It is used to estimate the negative to
            positive ratio.
    """
177

178
    __annotations__ = {
179
180
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
181
182
    }

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def __init__(
        self,
        backbone: nn.Module,
        anchor_generator: DefaultBoxGenerator,
        size: Tuple[int, int],
        num_classes: int,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        head: Optional[nn.Module] = None,
        score_thresh: float = 0.01,
        nms_thresh: float = 0.45,
        detections_per_img: int = 200,
        iou_thresh: float = 0.5,
        topk_candidates: int = 400,
        positive_fraction: float = 0.25,
198
        **kwargs: Any,
199
    ):
200
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
201
        _log_api_usage_once(self)
202
203
204
205
206

        self.backbone = backbone

        self.anchor_generator = anchor_generator

207
        self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
208
209

        if head is None:
210
            if hasattr(backbone, "out_channels"):
211
212
213
214
                out_channels = backbone.out_channels
            else:
                out_channels = det_utils.retrieve_out_channels(backbone, size)

215
216
217
218
            if len(out_channels) != len(anchor_generator.aspect_ratios):
                raise ValueError(
                    f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})"
                )
219
220
221
222
223
224
225
226
227
228
229

            num_anchors = self.anchor_generator.num_anchors_per_location()
            head = SSDHead(out_channels, num_anchors, num_classes)
        self.head = head

        self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
230
        self.transform = GeneralizedRCNNTransform(
231
            min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size, **kwargs
232
        )
233
234
235
236
237
238
239
240
241
242
243

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates
        self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
244
245
246
    def eager_outputs(
        self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
247
248
249
250
251
        if self.training:
            return losses

        return detections

252
253
254
255
256
257
258
259
260
    def compute_loss(
        self,
        targets: List[Dict[str, Tensor]],
        head_outputs: Dict[str, Tensor],
        anchors: List[Tensor],
        matched_idxs: List[Tensor],
    ) -> Dict[str, Tensor]:
        bbox_regression = head_outputs["bbox_regression"]
        cls_logits = head_outputs["cls_logits"]
261
262
263
264
265

        # Match original targets with default boxes
        num_foreground = 0
        bbox_loss = []
        cls_targets = []
266
267
268
269
270
271
272
        for (
            targets_per_image,
            bbox_regression_per_image,
            cls_logits_per_image,
            anchors_per_image,
            matched_idxs_per_image,
        ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
273
274
275
276
277
278
            # produce the matching between boxes and targets
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
            num_foreground += foreground_matched_idxs_per_image.numel()

            # Calculate regression loss
279
            matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
280
281
282
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
283
284
285
            bbox_loss.append(
                torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
            )
286
287

            # Estimate ground truth for class targets
288
289
290
291
292
293
294
295
            gt_classes_target = torch.zeros(
                (cls_logits_per_image.size(0),),
                dtype=targets_per_image["labels"].dtype,
                device=targets_per_image["labels"].device,
            )
            gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
                foreground_matched_idxs_per_image
            ]
296
297
298
299
300
301
302
            cls_targets.append(gt_classes_target)

        bbox_loss = torch.stack(bbox_loss)
        cls_targets = torch.stack(cls_targets)

        # Calculate classification loss
        num_classes = cls_logits.size(-1)
303
304
305
        cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
            cls_targets.size()
        )
306
307
308
309
310
311

        # Hard Negative Sampling
        foreground_idxs = cls_targets > 0
        num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
        # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
        negative_loss = cls_loss.clone()
312
        negative_loss[foreground_idxs] = -float("inf")  # use -inf to detect positive values that creeped in the sample
313
314
315
316
317
318
        values, idx = negative_loss.sort(1, descending=True)
        # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
        background_idxs = idx.sort(1)[1] < num_negative

        N = max(1, num_foreground)
        return {
319
320
            "bbox_regression": bbox_loss.sum() / N,
            "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
321
322
        }

323
324
325
    def forward(
        self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
326
        if self.training:
327
            if targets is None:
328
329
330
331
332
333
334
335
336
337
338
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for target in targets:
                    boxes = target["boxes"]
                    if isinstance(boxes, torch.Tensor):
                        torch._assert(
                            len(boxes.shape) == 2 and boxes.shape[-1] == 4,
                            f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
                        )
                    else:
                        torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
339
340
341
342
343

        # get the original image sizes
        original_image_sizes: List[Tuple[int, int]] = []
        for img in images:
            val = img.shape[-2:]
344
345
346
347
            torch._assert(
                len(val) == 2,
                f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
            )
348
349
350
351
352
353
354
355
356
357
358
359
360
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
361
362
                    torch._assert(
                        False,
363
                        "All bounding boxes should have positive height and width."
364
                        f" Found invalid box {degen_bb} for target at index {target_idx}.",
365
                    )
366
367
368
369

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
370
            features = OrderedDict([("0", features)])
371
372
373
374
375
376
377
378
379
380
381
382
383

        features = list(features.values())

        # compute the ssd heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections: List[Dict[str, Tensor]] = []
        if self.training:
            matched_idxs = []
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
            if targets is None:
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for anchors_per_image, targets_per_image in zip(anchors, targets):
                    if targets_per_image["boxes"].numel() == 0:
                        matched_idxs.append(
                            torch.full(
                                (anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device
                            )
                        )
                        continue

                    match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
                    matched_idxs.append(self.proposal_matcher(match_quality_matrix))

                losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
400
401
402
403
404
405
406
407
408
409
410
        else:
            detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        return self.eager_outputs(losses, detections)

411
412
413
414
415
    def postprocess_detections(
        self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
    ) -> List[Dict[str, Tensor]]:
        bbox_regression = head_outputs["bbox_regression"]
        pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

        num_classes = pred_scores.size(-1)
        device = pred_scores.device

        detections: List[Dict[str, Tensor]] = []

        for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
            boxes = self.box_coder.decode_single(boxes, anchors)
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            image_boxes = []
            image_scores = []
            image_labels = []
            for label in range(1, num_classes):
                score = scores[:, label]

                keep_idxs = score > self.score_thresh
                score = score[keep_idxs]
                box = boxes[keep_idxs]

                # keep only topk scoring predictions
437
                num_topk = det_utils._topk_min(score, self.topk_candidates, 0)
438
439
440
441
442
443
444
445
446
447
448
449
450
                score, idxs = score.topk(num_topk)
                box = box[idxs]

                image_boxes.append(box)
                image_scores.append(score)
                image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
451
452
453
454
455
456
457
458
459
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
460
461
462
463
        return detections


class SSDFeatureExtractorVGG(nn.Module):
464
    def __init__(self, backbone: nn.Module, highres: bool):
465
466
467
468
469
470
471
472
473
474
475
        super().__init__()

        _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))

        # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
        backbone[maxpool3_pos].ceil_mode = True

        # parameters used for L2 regularization + rescaling
        self.scale_weight = nn.Parameter(torch.ones(512) * 20)

        # Multiple Feature maps - page 4, Fig 2 of SSD paper
476
        self.features = nn.Sequential(*backbone[:maxpool4_pos])  # until conv4_3
477
478

        # SSD300 case - page 4, Fig 2 of SSD paper
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        extra = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(1024, 256, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # conv8_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(512, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # conv9_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv10_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv11_2
                    nn.ReLU(inplace=True),
                ),
            ]
        )
507
508
        if highres:
            # Additional layers for the SSD512 case. See page 11, footernote 5.
509
510
511
512
513
514
515
516
            extra.append(
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=4),  # conv12_2
                    nn.ReLU(inplace=True),
                )
            )
517
518
519
520
521
522
523
        _xavier_init(extra)

        fc = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False),  # add modified maxpool5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6),  # FC6 with atrous
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1),  # FC7
524
            nn.ReLU(inplace=True),
525
526
        )
        _xavier_init(fc)
527
528
529
530
531
532
533
        extra.insert(
            0,
            nn.Sequential(
                *backbone[maxpool4_pos:-1],  # until conv5_3, skip maxpool5
                fc,
            ),
        )
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # L2 regularization + Rescaling of 1st block's feature map
        x = self.features(x)
        rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
        output = [rescaled]

        # Calculating Feature maps for the rest blocks
        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


550
def _vgg_extractor(backbone: VGG, highres: bool, trainable_layers: int):
551
    backbone = backbone.features
552
    # Gather the indices of maxpools. These are the locations of output blocks.
553
    stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
554
555
556
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
557
558
559
560
    torch._assert(
        0 <= trainable_layers <= num_stages,
        f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}",
    )
561
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
562
563
564
565
566

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

567
    return SSDFeatureExtractorVGG(backbone, highres)
568
569


570
571
572
573
@handle_legacy_interface(
    weights=("pretrained", SSD300_VGG16_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", VGG16_Weights.IMAGENET1K_FEATURES),
)
574
def ssd300_vgg16(
575
576
    *,
    weights: Optional[SSD300_VGG16_Weights] = None,
577
    progress: bool = True,
578
579
    num_classes: Optional[int] = None,
    weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES,
580
581
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
582
) -> SSD:
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    """Constructs an SSD model with input size 300x300 and a VGG16 backbone.

    Reference: `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
611
612
613

    Example:

614
        >>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT)
615
        >>> model.eval()
616
        >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
617
618
619
        >>> predictions = model(x)

    Args:
620
        weights (SSD300_VGG16_Weights, optional): The pretrained weights for the model
621
        progress (bool): If True, displays a progress bar of the download to stderr
622
623
624
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (VGG16_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
625
626
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 4.
627
    """
628
629
630
    weights = SSD300_VGG16_Weights.verify(weights)
    weights_backbone = VGG16_Weights.verify(weights_backbone)

631
    if "size" in kwargs:
632
633
634
635
636
637
638
        warnings.warn("The size of the model is already fixed; ignoring the parameter.")

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91
639

640
    trainable_backbone_layers = _validate_trainable_layers(
641
        weights is not None or weights_backbone is not None, trainable_backbone_layers, 5, 4
642
    )
643

644
    # Use custom backbones more appropriate for SSD
645
    backbone = vgg16(weights=weights_backbone, progress=progress)
646
    backbone = _vgg_extractor(backbone, False, trainable_backbone_layers)
647
648
649
650
651
    anchor_generator = DefaultBoxGenerator(
        [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
        scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        steps=[8, 16, 32, 64, 100, 300],
    )
652
653
654
655
656
657

    defaults = {
        # Rescale the input in a way compatible to the backbone
        "image_mean": [0.48235, 0.45882, 0.40784],
        "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0],  # undo the 0-1 scaling of toTensor
    }
658
    kwargs: Any = {**defaults, **kwargs}
659
    model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
660
661
662
663

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

664
    return model