train.py 11.8 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
32
from coco_utils import get_coco, get_coco_kp
from engine import train_one_epoch, evaluate
33
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
34
35


flauted's avatar
flauted committed
36
def get_dataset(name, image_set, transform, data_path):
37
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
38
39
40
41
42
43
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


44
45
def get_transform(train, args):
    if train:
46
47
48
49
50
        return presets.DetectionPresetTrain(data_augmentation=args.data_augmentation)
    elif args.weights and args.test_only:
        weights = torchvision.models.get_weight(args.weights)
        trans = weights.transforms()
        return lambda img, target: (trans(img), target)
51
    else:
52
        return presets.DetectionPresetEval()
53
54


55
56
def get_args_parser(add_help=True):
    import argparse
57
58
59

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

60
61
62
63
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
64
65
66
67
68
69
70
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
71
    parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
72
73
74
75
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
76
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
77
78
79
80
81
82
83
84
85
86
87
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
88
89
90
91
92
93
    parser.add_argument(
        "--norm-weight-decay",
        default=None,
        type=float,
        help="weight decay for Normalization layers (default: None, same value as --wd)",
    )
94
95
96
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
111
112
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
113
114
115
116
117
118
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
119
120
121
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
122
123
124
125
126
127
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
128
129
130
131
132
133
134
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )

135
136
137
138
    parser.add_argument(
        "--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
    )

139
    # distributed training parameters
140
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
141
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
142
    parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
143
    parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
144

145
146
147
    # Mixed precision training parameters
    parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")

148
149
150
    return parser


151
def main(args):
152
153
154
    if args.output_dir:
        utils.mkdir(args.output_dir)

155
156
157
158
159
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

160
161
162
163
164
165
    if args.use_deterministic_algorithms:
        torch.backends.cudnn.benchmark = False
        torch.use_deterministic_algorithms(True)
    else:
        torch.backends.cudnn.benchmark = True

166
167
168
    # Data loading code
    print("Loading data")

169
170
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args), args.data_path)
171
172
173
174

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
175
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
176
177
178
179
180
181
182
183
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
184
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
185
186

    data_loader = torch.utils.data.DataLoader(
187
188
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
189
190

    data_loader_test = torch.utils.data.DataLoader(
191
192
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
193
194

    print("Creating model")
195
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
196
197
    if args.data_augmentation in ["multiscale", "lsj"]:
        kwargs["_skip_resize"] = True
198
    if "rcnn" in args.model:
199
200
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
201
202
203
    model = torchvision.models.detection.__dict__[args.model](
        weights=args.weights, weights_backbone=args.weights_backbone, num_classes=num_classes, **kwargs
    )
204
    model.to(device)
205
206
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
207
208
209
210
211
212

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    if args.norm_weight_decay is None:
        parameters = [p for p in model.parameters() if p.requires_grad]
    else:
        param_groups = torchvision.ops._utils.split_normalization_params(model)
        wd_groups = [args.norm_weight_decay, args.weight_decay]
        parameters = [{"params": p, "weight_decay": w} for p, w in zip(param_groups, wd_groups) if p]

    opt_name = args.opt.lower()
    if opt_name.startswith("sgd"):
        optimizer = torch.optim.SGD(
            parameters,
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
            nesterov="nesterov" in opt_name,
        )
    elif opt_name == "adamw":
        optimizer = torch.optim.AdamW(parameters, lr=args.lr, weight_decay=args.weight_decay)
    else:
        raise RuntimeError(f"Invalid optimizer {args.opt}. Only SGD and AdamW are supported.")
233

234
235
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

236
    args.lr_scheduler = args.lr_scheduler.lower()
237
    if args.lr_scheduler == "multisteplr":
238
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
239
    elif args.lr_scheduler == "cosineannealinglr":
240
241
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
242
        raise RuntimeError(
243
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
244
        )
Francisco Massa's avatar
Francisco Massa committed
245

246
    if args.resume:
247
248
249
250
251
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
252
253
        if args.amp:
            scaler.load_state_dict(checkpoint["scaler"])
Francisco Massa's avatar
Francisco Massa committed
254

255
    if args.test_only:
256
257
258
        # We disable the cudnn benchmarking because it can noticeably affect the accuracy
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True
259
260
261
262
263
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
264
    for epoch in range(args.start_epoch, args.epochs):
265
266
        if args.distributed:
            train_sampler.set_epoch(epoch)
267
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq, scaler)
268
269
        lr_scheduler.step()
        if args.output_dir:
270
            checkpoint = {
271
272
273
274
275
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
276
            }
277
278
            if args.amp:
                checkpoint["scaler"] = scaler.state_dict()
279
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
280
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
281
282
283
284
285
286

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
287
    print(f"Training time {total_time_str}")
288
289
290


if __name__ == "__main__":
291
    args = get_args_parser().parse_args()
292
    main(args)