"examples/reinforcement_learning/run_diffuser_locomotion.py" did not exist on "abb22b4eeb7756899871b7f4f23f6ae72be1da79"
functional_pil.py 12.7 KB
Newer Older
1
import numbers
2
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
3

vfdev's avatar
vfdev committed
4
import numpy as np
5
import torch
6
from PIL import Image, ImageOps, ImageEnhance
7
from typing_extensions import Literal
vfdev's avatar
vfdev committed
8

9
10
11
12
13
14
15
try:
    import accimage
except ImportError:
    accimage = None


@torch.jit.unused
vfdev's avatar
vfdev committed
16
def _is_pil_image(img: Any) -> bool:
17
18
19
20
21
22
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


23
24
25
@torch.jit.unused
def get_dimensions(img: Any) -> List[int]:
    if _is_pil_image(img):
26
27
28
29
        if hasattr(img, "getbands"):
            channels = len(img.getbands())
        else:
            channels = img.channels
30
31
32
33
34
        width, height = img.size
        return [channels, height, width]
    raise TypeError(f"Unexpected type {type(img)}")


vfdev's avatar
vfdev committed
35
@torch.jit.unused
36
def get_image_size(img: Any) -> List[int]:
vfdev's avatar
vfdev committed
37
    if _is_pil_image(img):
38
        return list(img.size)
39
    raise TypeError(f"Unexpected type {type(img)}")
vfdev's avatar
vfdev committed
40
41


42
@torch.jit.unused
43
def get_image_num_channels(img: Any) -> int:
44
    if _is_pil_image(img):
45
46
47
48
        if hasattr(img, "getbands"):
            return len(img.getbands())
        else:
            return img.channels
49
    raise TypeError(f"Unexpected type {type(img)}")
50
51


52
@torch.jit.unused
53
def hflip(img: Image.Image) -> Image.Image:
54
    if not _is_pil_image(img):
55
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
56
57
58
59
60

    return img.transpose(Image.FLIP_LEFT_RIGHT)


@torch.jit.unused
61
def vflip(img: Image.Image) -> Image.Image:
62
    if not _is_pil_image(img):
63
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
64
65

    return img.transpose(Image.FLIP_TOP_BOTTOM)
66
67
68


@torch.jit.unused
69
def adjust_brightness(img: Image.Image, brightness_factor: float) -> Image.Image:
70
    if not _is_pil_image(img):
71
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
72
73
74
75
76
77
78

    enhancer = ImageEnhance.Brightness(img)
    img = enhancer.enhance(brightness_factor)
    return img


@torch.jit.unused
79
def adjust_contrast(img: Image.Image, contrast_factor: float) -> Image.Image:
80
    if not _is_pil_image(img):
81
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
82
83
84
85
86
87
88

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img


@torch.jit.unused
89
def adjust_saturation(img: Image.Image, saturation_factor: float) -> Image.Image:
90
    if not _is_pil_image(img):
91
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
92
93
94
95
96
97
98

    enhancer = ImageEnhance.Color(img)
    img = enhancer.enhance(saturation_factor)
    return img


@torch.jit.unused
99
def adjust_hue(img: Image.Image, hue_factor: float) -> Image.Image:
100
    if not (-0.5 <= hue_factor <= 0.5):
101
        raise ValueError(f"hue_factor ({hue_factor}) is not in [-0.5, 0.5].")
102
103

    if not _is_pil_image(img):
104
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
105
106

    input_mode = img.mode
107
    if input_mode in {"L", "1", "I", "F"}:
108
109
        return img

110
    h, s, v = img.convert("HSV").split()
111
112
113

    np_h = np.array(h, dtype=np.uint8)
    # uint8 addition take cares of rotation across boundaries
114
    with np.errstate(over="ignore"):
115
        np_h += np.uint8(hue_factor * 255)
116
    h = Image.fromarray(np_h, "L")
117

118
    img = Image.merge("HSV", (h, s, v)).convert(input_mode)
119
    return img
120
121


122
@torch.jit.unused
123
124
125
126
127
128
def adjust_gamma(
    img: Image.Image,
    gamma: float,
    gain: float = 1.0,
) -> Image.Image:

129
    if not _is_pil_image(img):
130
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
131
132

    if gamma < 0:
133
        raise ValueError("Gamma should be a non-negative real number")
134
135

    input_mode = img.mode
136
    img = img.convert("RGB")
137
    gamma_map = [int((255 + 1 - 1e-3) * gain * pow(ele / 255.0, gamma)) for ele in range(256)] * 3
138
139
140
141
142
143
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part

    img = img.convert(input_mode)
    return img


144
@torch.jit.unused
145
146
147
148
def pad(
    img: Image.Image,
    padding: Union[int, List[int], Tuple[int, ...]],
    fill: Optional[Union[float, List[float], Tuple[float, ...]]] = 0,
149
    padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
150
151
) -> Image.Image:

152
    if not _is_pil_image(img):
153
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
154
155
156
157
158
159
160
161
162
163
164
165

    if not isinstance(padding, (numbers.Number, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, list):
        padding = tuple(padding)

    if isinstance(padding, tuple) and len(padding) not in [1, 2, 4]:
166
        raise ValueError(f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple")
167
168
169
170
171
172
173
174
175

    if isinstance(padding, tuple) and len(padding) == 1:
        # Compatibility with `functional_tensor.pad`
        padding = padding[0]

    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

    if padding_mode == "constant":
176
        opts = _parse_fill(fill, img, name="fill")
177
178
        if img.mode == "P":
            palette = img.getpalette()
179
            image = ImageOps.expand(img, border=padding, **opts)
180
181
182
            image.putpalette(palette)
            return image

183
        return ImageOps.expand(img, border=padding, **opts)
184
185
186
187
188
189
190
191
192
193
194
195
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
        if isinstance(padding, tuple) and len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        if isinstance(padding, tuple) and len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

196
197
198
199
200
201
202
203
204
        p = [pad_left, pad_top, pad_right, pad_bottom]
        cropping = -np.minimum(p, 0)

        if cropping.any():
            crop_left, crop_top, crop_right, crop_bottom = cropping
            img = img.crop((crop_left, crop_top, img.width - crop_right, img.height - crop_bottom))

        pad_left, pad_top, pad_right, pad_bottom = np.maximum(p, 0)

205
        if img.mode == "P":
206
207
            palette = img.getpalette()
            img = np.asarray(img)
208
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), mode=padding_mode)
209
210
211
212
213
214
215
216
217
218
219
220
221
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
vfdev's avatar
vfdev committed
222
223
224


@torch.jit.unused
225
226
227
228
229
230
231
232
def crop(
    img: Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
) -> Image.Image:

vfdev's avatar
vfdev committed
233
    if not _is_pil_image(img):
234
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
235
236

    return img.crop((left, top, left + width, top + height))
vfdev's avatar
vfdev committed
237
238
239


@torch.jit.unused
240
241
242
243
244
245
246
def resize(
    img: Image.Image,
    size: Union[Sequence[int], int],
    interpolation: int = Image.BILINEAR,
    max_size: Optional[int] = None,
) -> Image.Image:

vfdev's avatar
vfdev committed
247
    if not _is_pil_image(img):
248
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
249
    if not (isinstance(size, int) or (isinstance(size, Sequence) and len(size) in (1, 2))):
250
        raise TypeError(f"Got inappropriate size arg: {size}")
vfdev's avatar
vfdev committed
251

252
253
254
    if isinstance(size, Sequence) and len(size) == 1:
        size = size[0]
    if isinstance(size, int):
vfdev's avatar
vfdev committed
255
        w, h = img.size
256
257
258
259
260
261
262
263
264
265
266
267
268
269

        short, long = (w, h) if w <= h else (h, w)
        new_short, new_long = size, int(size * long / short)

        if max_size is not None:
            if max_size <= size:
                raise ValueError(
                    f"max_size = {max_size} must be strictly greater than the requested "
                    f"size for the smaller edge size = {size}"
                )
            if new_long > max_size:
                new_short, new_long = int(max_size * new_short / new_long), max_size

        new_w, new_h = (new_short, new_long) if w <= h else (new_long, new_short)
270
271
272
273
274

        if (w, h) == (new_w, new_h):
            return img
        else:
            return img.resize((new_w, new_h), interpolation)
vfdev's avatar
vfdev committed
275
    else:
276
277
278
279
280
        if max_size is not None:
            raise ValueError(
                "max_size should only be passed if size specifies the length of the smaller edge, "
                "i.e. size should be an int or a sequence of length 1 in torchscript mode."
            )
vfdev's avatar
vfdev committed
281
        return img.resize(size[::-1], interpolation)
vfdev's avatar
vfdev committed
282
283
284


@torch.jit.unused
285
286
287
288
289
290
def _parse_fill(
    fill: Optional[Union[float, List[float], Tuple[float, ...]]],
    img: Image.Image,
    name: str = "fillcolor",
) -> Dict[str, Optional[Union[float, List[float], Tuple[float, ...]]]]:

291
    # Process fill color for affine transforms
vfdev's avatar
vfdev committed
292
293
294
295
296
    num_bands = len(img.getbands())
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
297
298
    if isinstance(fill, (list, tuple)):
        if len(fill) != num_bands:
299
            msg = "The number of elements in 'fill' does not match the number of bands of the image ({} != {})"
300
301
302
            raise ValueError(msg.format(len(fill), num_bands))

        fill = tuple(fill)
vfdev's avatar
vfdev committed
303

304
    return {name: fill}
vfdev's avatar
vfdev committed
305
306
307


@torch.jit.unused
308
309
310
311
312
313
314
def affine(
    img: Image.Image,
    matrix: List[float],
    interpolation: int = Image.NEAREST,
    fill: Optional[Union[float, List[float], Tuple[float, ...]]] = 0,
) -> Image.Image:

vfdev's avatar
vfdev committed
315
    if not _is_pil_image(img):
316
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
317
318

    output_size = img.size
319
    opts = _parse_fill(fill, img)
320
    return img.transform(output_size, Image.AFFINE, matrix, interpolation, **opts)
vfdev's avatar
vfdev committed
321
322
323


@torch.jit.unused
324
325
326
327
328
329
330
331
332
def rotate(
    img: Image.Image,
    angle: float,
    interpolation: int = Image.NEAREST,
    expand: bool = False,
    center: Optional[Tuple[int, int]] = None,
    fill: Optional[Union[float, List[float], Tuple[float, ...]]] = 0,
) -> Image.Image:

vfdev's avatar
vfdev committed
333
    if not _is_pil_image(img):
334
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
vfdev's avatar
vfdev committed
335

336
    opts = _parse_fill(fill, img)
337
    return img.rotate(angle, interpolation, expand, center, **opts)
338
339
340


@torch.jit.unused
341
342
343
344
345
346
347
def perspective(
    img: Image.Image,
    perspective_coeffs: float,
    interpolation: int = Image.BICUBIC,
    fill: Optional[Union[float, List[float], Tuple[float, ...]]] = 0,
) -> Image.Image:

348
    if not _is_pil_image(img):
349
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
350

351
    opts = _parse_fill(fill, img)
352
353

    return img.transform(img.size, Image.PERSPECTIVE, perspective_coeffs, interpolation, **opts)
354
355
356


@torch.jit.unused
357
def to_grayscale(img: Image.Image, num_output_channels: int) -> Image.Image:
358
    if not _is_pil_image(img):
359
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
360
361

    if num_output_channels == 1:
362
        img = img.convert("L")
363
    elif num_output_channels == 3:
364
        img = img.convert("L")
365
366
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
367
        img = Image.fromarray(np_img, "RGB")
368
    else:
369
        raise ValueError("num_output_channels should be either 1 or 3")
370
371

    return img
372
373
374


@torch.jit.unused
375
def invert(img: Image.Image) -> Image.Image:
376
    if not _is_pil_image(img):
377
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
378
379
380
381
    return ImageOps.invert(img)


@torch.jit.unused
382
def posterize(img: Image.Image, bits: int) -> Image.Image:
383
    if not _is_pil_image(img):
384
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
385
386
387
388
    return ImageOps.posterize(img, bits)


@torch.jit.unused
389
def solarize(img: Image.Image, threshold: int) -> Image.Image:
390
    if not _is_pil_image(img):
391
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
392
393
394
395
    return ImageOps.solarize(img, threshold)


@torch.jit.unused
396
def adjust_sharpness(img: Image.Image, sharpness_factor: float) -> Image.Image:
397
    if not _is_pil_image(img):
398
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
399
400
401
402
403
404
405

    enhancer = ImageEnhance.Sharpness(img)
    img = enhancer.enhance(sharpness_factor)
    return img


@torch.jit.unused
406
def autocontrast(img: Image.Image) -> Image.Image:
407
    if not _is_pil_image(img):
408
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
409
410
411
412
    return ImageOps.autocontrast(img)


@torch.jit.unused
413
def equalize(img: Image.Image) -> Image.Image:
414
    if not _is_pil_image(img):
415
        raise TypeError(f"img should be PIL Image. Got {type(img)}")
416
    return ImageOps.equalize(img)