functional_pil.py 15.5 KB
Newer Older
1
import numbers
vfdev's avatar
vfdev committed
2
from typing import Any, List, Sequence
3

vfdev's avatar
vfdev committed
4
import numpy as np
5
import torch
vfdev's avatar
vfdev committed
6
7
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION

8
9
10
11
12
13
14
try:
    import accimage
except ImportError:
    accimage = None


@torch.jit.unused
vfdev's avatar
vfdev committed
15
def _is_pil_image(img: Any) -> bool:
16
17
18
19
20
21
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


vfdev's avatar
vfdev committed
22
23
24
25
26
27
28
@torch.jit.unused
def _get_image_size(img: Any) -> List[int]:
    if _is_pil_image(img):
        return img.size
    raise TypeError("Unexpected type {}".format(type(img)))


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@torch.jit.unused
def hflip(img):
    """Horizontally flip the given PIL Image.

    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Horizontally flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_LEFT_RIGHT)


@torch.jit.unused
def vflip(img):
    """Vertically flip the given PIL Image.

    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Vertically flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_TOP_BOTTOM)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165


@torch.jit.unused
def adjust_brightness(img, brightness_factor):
    """Adjust brightness of an RGB image.

    Args:
        img (PIL Image): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        PIL Image: Brightness adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Brightness(img)
    img = enhancer.enhance(brightness_factor)
    return img


@torch.jit.unused
def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.
    Args:
        img (PIL Image): PIL Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.
    Returns:
        PIL Image: Contrast adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img


@torch.jit.unused
def adjust_saturation(img, saturation_factor):
    """Adjust color saturation of an image.
    Args:
        img (PIL Image): PIL Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.
    Returns:
        PIL Image: Saturation adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Color(img)
    img = enhancer.enhance(saturation_factor)
    return img


@torch.jit.unused
def adjust_hue(img, hue_factor):
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
    if not(-0.5 <= hue_factor <= 0.5):
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    input_mode = img.mode
    if input_mode in {'L', '1', 'I', 'F'}:
        return img

    h, s, v = img.convert('HSV').split()

    np_h = np.array(h, dtype=np.uint8)
    # uint8 addition take cares of rotation across boundaries
    with np.errstate(over='ignore'):
        np_h += np.uint8(hue_factor * 255)
    h = Image.fromarray(np_h, 'L')

    img = Image.merge('HSV', (h, s, v)).convert(input_mode)
    return img
166
167


168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
@torch.jit.unused
def adjust_gamma(img, gamma, gain=1):
    r"""Perform gamma correction on an image.

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.

    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction

    Args:
        img (PIL Image): PIL Image to be adjusted.
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')
    gamma_map = [(255 + 1 - 1e-3) * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part

    img = img.convert(input_mode)
    return img


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@torch.jit.unused
def pad(img, padding, fill=0, padding_mode="constant"):
    r"""Pad the given PIL.Image on all sides with the given "pad" value.

    Args:
        img (PIL Image): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively. For compatibility reasons
            with ``functional_tensor.pad``, if a tuple or list of length 1 is provided, it is interpreted as
            a single int.
        fill (int or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

    Returns:
        PIL Image: Padded image.
    """

    if not _is_pil_image(img):
        raise TypeError("img should be PIL Image. Got {}".format(type(img)))

    if not isinstance(padding, (numbers.Number, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, list):
        padding = tuple(padding)

    if isinstance(padding, tuple) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

    if isinstance(padding, tuple) and len(padding) == 1:
        # Compatibility with `functional_tensor.pad`
        padding = padding[0]

    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

    if padding_mode == "constant":
264
        opts = _parse_fill(fill, img, "2.3.0", name="fill")
265
266
        if img.mode == "P":
            palette = img.getpalette()
267
            image = ImageOps.expand(img, border=padding, **opts)
268
269
270
            image.putpalette(palette)
            return image

271
        return ImageOps.expand(img, border=padding, **opts)
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
        if isinstance(padding, tuple) and len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        if isinstance(padding, tuple) and len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

        if img.mode == 'P':
            palette = img.getpalette()
            img = np.asarray(img)
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
vfdev's avatar
vfdev committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320


@torch.jit.unused
def crop(img: Image.Image, top: int, left: int, height: int, width: int) -> Image.Image:
    """Crop the given PIL Image.

    Args:
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.

    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.crop((left, top, left + width, top + height))
vfdev's avatar
vfdev committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361


@torch.jit.unused
def resize(img, size, interpolation=Image.BILINEAR):
    r"""Resize the input PIL Image to the given size.

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaining
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            For compatibility reasons with ``functional_tensor.resize``, if a tuple or list of length 1 is provided,
            it is interpreted as a single int.
        interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR``.

    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
    if not (isinstance(size, int) or (isinstance(size, Sequence) and len(size) in (1, 2))):
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int) or len(size) == 1:
        if isinstance(size, Sequence):
            size = size[0]
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)
vfdev's avatar
vfdev committed
362
363
364


@torch.jit.unused
365
366
def _parse_fill(fill, img, min_pil_version, name="fillcolor"):
    """Helper function to get the fill color for rotate, perspective transforms, and pad.
vfdev's avatar
vfdev committed
367
368
369
370
371
372
373
374

    Args:
        fill (n-tuple or int or float): Pixel fill value for area outside the transformed
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands.
        img (PIL Image): Image to be filled.
        min_pil_version (str): The minimum PILLOW version for when the ``fillcolor`` option
            was first introduced in the calling function. (e.g. rotate->5.2.0, perspective->5.0.0)
375
        name (str): Name of the ``fillcolor`` option in the output. Defaults to ``"fillcolor"``.
vfdev's avatar
vfdev committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

    Returns:
        dict: kwarg for ``fillcolor``
    """
    major_found, minor_found = (int(v) for v in PILLOW_VERSION.split('.')[:2])
    major_required, minor_required = (int(v) for v in min_pil_version.split('.')[:2])
    if major_found < major_required or (major_found == major_required and minor_found < minor_required):
        if fill is None:
            return {}
        else:
            msg = ("The option to fill background area of the transformed image, "
                   "requires pillow>={}")
            raise RuntimeError(msg.format(min_pil_version))

    num_bands = len(img.getbands())
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
    if not isinstance(fill, (int, float)) and len(fill) != num_bands:
        msg = ("The number of elements in 'fill' does not match the number of "
               "bands of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_bands))

400
    return {name: fill}
vfdev's avatar
vfdev committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424


@torch.jit.unused
def affine(img, matrix, resample=0, fillcolor=None):
    """Apply affine transformation on the PIL Image keeping image center invariant.

    Args:
        img (PIL Image): image to be rotated.
        matrix (list of floats): list of 6 float values representing inverse matrix for affine transformation.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter.
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)

    Returns:
        PIL Image: Transformed image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    output_size = img.size
    opts = _parse_fill(fillcolor, img, '5.0.0')
    return img.transform(output_size, Image.AFFINE, matrix, resample, **opts)