mnist.py 11.9 KB
Newer Older
Tian Qi Chen's avatar
Tian Qi Chen committed
1
2
3
4
5
6
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
7
import numpy as np
Tian Qi Chen's avatar
Tian Qi Chen committed
8
9
import torch
import codecs
10
from .utils import download_url
Tian Qi Chen's avatar
Tian Qi Chen committed
11

12

Tian Qi Chen's avatar
Tian Qi Chen committed
13
class MNIST(data.Dataset):
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    """`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
Tian Qi Chen's avatar
Tian Qi Chen committed
29
30
31
32
33
34
35
36
37
38
    urls = [
        'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
        'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
    ]
    raw_folder = 'raw'
    processed_folder = 'processed'
    training_file = 'training.pt'
    test_file = 'test.pt'
39
40
41
42
    classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
               '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
    class_to_idx = {_class: i for i, _class in enumerate(classes)}

Tian Qi Chen's avatar
Tian Qi Chen committed
43
    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
44
        self.root = os.path.expanduser(root)
Tian Qi Chen's avatar
Tian Qi Chen committed
45
46
        self.transform = transform
        self.target_transform = target_transform
47
        self.train = train  # training set or test set
Tian Qi Chen's avatar
Tian Qi Chen committed
48
49
50
51
52

        if download:
            self.download()

        if not self._check_exists():
53
54
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')
Tian Qi Chen's avatar
Tian Qi Chen committed
55
56

        if self.train:
57
            data_file = self.training_file
Tian Qi Chen's avatar
Tian Qi Chen committed
58
        else:
59
60
            data_file = self.test_file
        self.data, self.targets = torch.load(os.path.join(self.root, self.processed_folder, data_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
61
62

    def __getitem__(self, index):
63
64
65
66
67
68
69
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
70
        img, target = self.data[index], self.targets[index]
Tian Qi Chen's avatar
Tian Qi Chen committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img.numpy(), mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
85
        return len(self.data)
Tian Qi Chen's avatar
Tian Qi Chen committed
86
87
88

    def _check_exists(self):
        return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and \
89
            os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))
Tian Qi Chen's avatar
Tian Qi Chen committed
90
91

    def download(self):
92
        """Download the MNIST data if it doesn't exist in processed_folder already."""
Tian Qi Chen's avatar
Tian Qi Chen committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        import gzip

        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        for url in self.urls:
            filename = url.rpartition('/')[2]
            file_path = os.path.join(self.root, self.raw_folder, filename)
111
112
            download_url(url, root=os.path.join(self.root, self.raw_folder),
                         filename=filename, md5=None)
Tian Qi Chen's avatar
Tian Qi Chen committed
113
            with open(file_path.replace('.gz', ''), 'wb') as out_f, \
114
                    gzip.GzipFile(file_path) as zip_f:
Tian Qi Chen's avatar
Tian Qi Chen committed
115
116
117
118
                out_f.write(zip_f.read())
            os.unlink(file_path)

        # process and save as torch files
Adam Paszke's avatar
Adam Paszke committed
119
120
        print('Processing...')

Tian Qi Chen's avatar
Tian Qi Chen committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        training_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
        )
        test_set = (
            read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
            read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
        )
        with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
            torch.save(training_set, f)
        with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
            torch.save(test_set, f)

        print('Done!')

136
137
138
139
140
141
142
143
144
145
146
147
    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        tmp = 'train' if self.train is True else 'test'
        fmt_str += '    Split: {}\n'.format(tmp)
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str

148

149
class FashionMNIST(MNIST):
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    """`Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
164
165
166
167
168
169
170
    """
    urls = [
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz',
        'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz',
    ]
171
172
173
    classes = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',
               'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    class_to_idx = {_class: i for i, _class in enumerate(classes)}
174
175


176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
class EMNIST(MNIST):
    """`EMNIST <https://www.nist.gov/itl/iad/image-group/emnist-dataset/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where ``processed/training.pt``
            and  ``processed/test.pt`` exist.
        split (string): The dataset has 6 different splits: ``byclass``, ``bymerge``,
            ``balanced``, ``letters``, ``digits`` and ``mnist``. This argument specifies
            which one to use.
        train (bool, optional): If True, creates dataset from ``training.pt``,
            otherwise from ``test.pt``.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
    """
195
    url = 'http://www.itl.nist.gov/iaui/vip/cs_links/EMNIST/gzip.zip'
196
197
198
199
200
201
202
203
204
205
206
    splits = ('byclass', 'bymerge', 'balanced', 'letters', 'digits', 'mnist')

    def __init__(self, root, split, **kwargs):
        if split not in self.splits:
            raise ValueError('Split "{}" not found. Valid splits are: {}'.format(
                split, ', '.join(self.splits),
            ))
        self.split = split
        self.training_file = self._training_file(split)
        self.test_file = self._test_file(split)
        super(EMNIST, self).__init__(root, **kwargs)
Tian Qi Chen's avatar
Tian Qi Chen committed
207

208
209
210
211
212
213
214
215
216
217
218
    def _training_file(self, split):
        return 'training_{}.pt'.format(split)

    def _test_file(self, split):
        return 'test_{}.pt'.format(split)

    def download(self):
        """Download the EMNIST data if it doesn't exist in processed_folder already."""
        import gzip
        import shutil
        import zipfile
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        if self._check_exists():
            return

        # download files
        try:
            os.makedirs(os.path.join(self.root, self.raw_folder))
            os.makedirs(os.path.join(self.root, self.processed_folder))
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        filename = self.url.rpartition('/')[2]
        raw_folder = os.path.join(self.root, self.raw_folder)
        file_path = os.path.join(raw_folder, filename)
236
        download_url(self.url, root=file_path, filename=filename, md5=None)
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

        print('Extracting zip archive')
        with zipfile.ZipFile(file_path) as zip_f:
            zip_f.extractall(raw_folder)
        os.unlink(file_path)
        gzip_folder = os.path.join(raw_folder, 'gzip')
        for gzip_file in os.listdir(gzip_folder):
            if gzip_file.endswith('.gz'):
                print('Extracting ' + gzip_file)
                with open(os.path.join(raw_folder, gzip_file.replace('.gz', '')), 'wb') as out_f, \
                        gzip.GzipFile(os.path.join(gzip_folder, gzip_file)) as zip_f:
                    out_f.write(zip_f.read())
        shutil.rmtree(gzip_folder)

        # process and save as torch files
        for split in self.splits:
            print('Processing ' + split)
            training_set = (
                read_image_file(os.path.join(raw_folder, 'emnist-{}-train-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(raw_folder, 'emnist-{}-train-labels-idx1-ubyte'.format(split)))
            )
            test_set = (
                read_image_file(os.path.join(raw_folder, 'emnist-{}-test-images-idx3-ubyte'.format(split))),
                read_label_file(os.path.join(raw_folder, 'emnist-{}-test-labels-idx1-ubyte'.format(split)))
            )
            with open(os.path.join(self.root, self.processed_folder, self._training_file(split)), 'wb') as f:
                torch.save(training_set, f)
            with open(os.path.join(self.root, self.processed_folder, self._test_file(split)), 'wb') as f:
                torch.save(test_set, f)

        print('Done!')


def get_int(b):
    return int(codecs.encode(b, 'hex'), 16)
Tian Qi Chen's avatar
Tian Qi Chen committed
272

273

Tian Qi Chen's avatar
Tian Qi Chen committed
274
275
276
277
278
def read_label_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2049
        length = get_int(data[4:8])
279
280
        parsed = np.frombuffer(data, dtype=np.uint8, offset=8)
        return torch.from_numpy(parsed).view(length).long()
Tian Qi Chen's avatar
Tian Qi Chen committed
281

282

Tian Qi Chen's avatar
Tian Qi Chen committed
283
284
285
286
287
288
289
290
def read_image_file(path):
    with open(path, 'rb') as f:
        data = f.read()
        assert get_int(data[:4]) == 2051
        length = get_int(data[4:8])
        num_rows = get_int(data[8:12])
        num_cols = get_int(data[12:16])
        images = []
291
292
        parsed = np.frombuffer(data, dtype=np.uint8, offset=16)
        return torch.from_numpy(parsed).view(length, num_rows, num_cols)