ssd.py 29 KB
Newer Older
1
2
3
4
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple

5
6
7
8
9
import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ...ops import boxes as box_ops
10
from ...transforms._presets import ObjectDetection
11
from ...utils import _log_api_usage_once
12
from .._api import register_model, Weights, WeightsEnum
13
from .._meta import _COCO_CATEGORIES
14
15
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..vgg import VGG, vgg16, VGG16_Weights
16
17
18
19
20
21
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform


22
23
24
25
26
27
28
29
30
31
32
33
34
__all__ = [
    "SSD300_VGG16_Weights",
    "ssd300_vgg16",
]


class SSD300_VGG16_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
        transforms=ObjectDetection,
        meta={
            "num_params": 35641826,
            "categories": _COCO_CATEGORIES,
35
            "min_size": (1, 1),
36
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#ssd300-vgg16",
37
38
39
40
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 25.1,
                }
41
            },
42
43
            "_ops": 34.858,
            "_weight_size": 135.988,
44
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
45
46
47
        },
    )
    DEFAULT = COCO_V1
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


def _xavier_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.xavier_uniform_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        super().__init__()
        self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = SSDRegressionHead(in_channels, num_anchors)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
66
67
            "bbox_regression": self.regression_head(x),
            "cls_logits": self.classification_head(x),
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        }


class SSDScoringHead(nn.Module):
    def __init__(self, module_list: nn.ModuleList, num_columns: int):
        super().__init__()
        self.module_list = module_list
        self.num_columns = num_columns

    def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
        """
        This is equivalent to self.module_list[idx](x),
        but torchscript doesn't support this yet
        """
        num_blocks = len(self.module_list)
        if idx < 0:
            idx += num_blocks
        out = x
86
        for i, module in enumerate(self.module_list):
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            if i == idx:
                out = module(x)
        return out

    def forward(self, x: List[Tensor]) -> Tensor:
        all_results = []

        for i, features in enumerate(x):
            results = self._get_result_from_module_list(features, i)

            # Permute output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = results.shape
            results = results.view(N, -1, self.num_columns, H, W)
            results = results.permute(0, 3, 4, 1, 2)
            results = results.reshape(N, -1, self.num_columns)  # Size=(N, HWA, K)

            all_results.append(results)

        return torch.cat(all_results, dim=1)


class SSDClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
        _xavier_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
        _xavier_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSD(nn.Module):
    """
    Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
147
148
    follows, where ``N`` is the number of detections:

149
150
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
151
152
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
153
154
155
156
157
158
159
160
161

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute with the list of the output channels of
            each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
        anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
            set of feature maps.
        size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
            to the backbone.
162
        num_classes (int): number of output classes of the model (including the background).
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
            a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        topk_candidates (int): Number of best detections to keep before NMS.
        positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
            proposals used during the training of the classification head. It is used to estimate the negative to
            positive ratio.
    """
180

181
    __annotations__ = {
182
183
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
184
185
    }

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def __init__(
        self,
        backbone: nn.Module,
        anchor_generator: DefaultBoxGenerator,
        size: Tuple[int, int],
        num_classes: int,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        head: Optional[nn.Module] = None,
        score_thresh: float = 0.01,
        nms_thresh: float = 0.45,
        detections_per_img: int = 200,
        iou_thresh: float = 0.5,
        topk_candidates: int = 400,
        positive_fraction: float = 0.25,
201
        **kwargs: Any,
202
    ):
203
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
204
        _log_api_usage_once(self)
205
206
207
208
209

        self.backbone = backbone

        self.anchor_generator = anchor_generator

210
        self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
211
212

        if head is None:
213
            if hasattr(backbone, "out_channels"):
214
215
216
217
                out_channels = backbone.out_channels
            else:
                out_channels = det_utils.retrieve_out_channels(backbone, size)

218
219
220
221
            if len(out_channels) != len(anchor_generator.aspect_ratios):
                raise ValueError(
                    f"The length of the output channels from the backbone ({len(out_channels)}) do not match the length of the anchor generator aspect ratios ({len(anchor_generator.aspect_ratios)})"
                )
222
223
224
225
226
227
228
229
230
231
232

            num_anchors = self.anchor_generator.num_anchors_per_location()
            head = SSDHead(out_channels, num_anchors, num_classes)
        self.head = head

        self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
233
        self.transform = GeneralizedRCNNTransform(
234
            min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size, **kwargs
235
        )
236
237
238
239
240
241
242
243
244
245
246

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates
        self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
247
248
249
    def eager_outputs(
        self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
250
251
252
253
254
        if self.training:
            return losses

        return detections

255
256
257
258
259
260
261
262
263
    def compute_loss(
        self,
        targets: List[Dict[str, Tensor]],
        head_outputs: Dict[str, Tensor],
        anchors: List[Tensor],
        matched_idxs: List[Tensor],
    ) -> Dict[str, Tensor]:
        bbox_regression = head_outputs["bbox_regression"]
        cls_logits = head_outputs["cls_logits"]
264
265
266
267
268

        # Match original targets with default boxes
        num_foreground = 0
        bbox_loss = []
        cls_targets = []
269
270
271
272
273
274
275
        for (
            targets_per_image,
            bbox_regression_per_image,
            cls_logits_per_image,
            anchors_per_image,
            matched_idxs_per_image,
        ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
276
277
278
279
280
281
            # produce the matching between boxes and targets
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
            num_foreground += foreground_matched_idxs_per_image.numel()

            # Calculate regression loss
282
            matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
283
284
285
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
286
287
288
            bbox_loss.append(
                torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
            )
289
290

            # Estimate ground truth for class targets
291
292
293
294
295
296
297
298
            gt_classes_target = torch.zeros(
                (cls_logits_per_image.size(0),),
                dtype=targets_per_image["labels"].dtype,
                device=targets_per_image["labels"].device,
            )
            gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
                foreground_matched_idxs_per_image
            ]
299
300
301
302
303
304
305
            cls_targets.append(gt_classes_target)

        bbox_loss = torch.stack(bbox_loss)
        cls_targets = torch.stack(cls_targets)

        # Calculate classification loss
        num_classes = cls_logits.size(-1)
306
307
308
        cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
            cls_targets.size()
        )
309
310
311
312
313
314

        # Hard Negative Sampling
        foreground_idxs = cls_targets > 0
        num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
        # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
        negative_loss = cls_loss.clone()
315
        negative_loss[foreground_idxs] = -float("inf")  # use -inf to detect positive values that creeped in the sample
316
317
318
319
320
321
        values, idx = negative_loss.sort(1, descending=True)
        # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
        background_idxs = idx.sort(1)[1] < num_negative

        N = max(1, num_foreground)
        return {
322
323
            "bbox_regression": bbox_loss.sum() / N,
            "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
324
325
        }

326
327
328
    def forward(
        self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
329
        if self.training:
330
            if targets is None:
331
332
333
334
335
336
337
338
339
340
341
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for target in targets:
                    boxes = target["boxes"]
                    if isinstance(boxes, torch.Tensor):
                        torch._assert(
                            len(boxes.shape) == 2 and boxes.shape[-1] == 4,
                            f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.",
                        )
                    else:
                        torch._assert(False, f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
342
343
344
345
346

        # get the original image sizes
        original_image_sizes: List[Tuple[int, int]] = []
        for img in images:
            val = img.shape[-2:]
347
348
349
350
            torch._assert(
                len(val) == 2,
                f"expecting the last two dimensions of the Tensor to be H and W instead got {img.shape[-2:]}",
            )
351
352
353
354
355
356
357
358
359
360
361
362
363
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
364
365
                    torch._assert(
                        False,
366
                        "All bounding boxes should have positive height and width."
367
                        f" Found invalid box {degen_bb} for target at index {target_idx}.",
368
                    )
369
370
371
372

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
373
            features = OrderedDict([("0", features)])
374
375
376
377
378
379
380
381
382
383
384
385
386

        features = list(features.values())

        # compute the ssd heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections: List[Dict[str, Tensor]] = []
        if self.training:
            matched_idxs = []
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            if targets is None:
                torch._assert(False, "targets should not be none when in training mode")
            else:
                for anchors_per_image, targets_per_image in zip(anchors, targets):
                    if targets_per_image["boxes"].numel() == 0:
                        matched_idxs.append(
                            torch.full(
                                (anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device
                            )
                        )
                        continue

                    match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
                    matched_idxs.append(self.proposal_matcher(match_quality_matrix))

                losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
403
404
405
406
407
408
409
410
411
412
413
        else:
            detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        return self.eager_outputs(losses, detections)

414
415
416
417
418
    def postprocess_detections(
        self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
    ) -> List[Dict[str, Tensor]]:
        bbox_regression = head_outputs["bbox_regression"]
        pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

        num_classes = pred_scores.size(-1)
        device = pred_scores.device

        detections: List[Dict[str, Tensor]] = []

        for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
            boxes = self.box_coder.decode_single(boxes, anchors)
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            image_boxes = []
            image_scores = []
            image_labels = []
            for label in range(1, num_classes):
                score = scores[:, label]

                keep_idxs = score > self.score_thresh
                score = score[keep_idxs]
                box = boxes[keep_idxs]

                # keep only topk scoring predictions
440
                num_topk = det_utils._topk_min(score, self.topk_candidates, 0)
441
442
443
444
445
446
447
448
449
450
451
452
453
                score, idxs = score.topk(num_topk)
                box = box[idxs]

                image_boxes.append(box)
                image_scores.append(score)
                image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
454
455
456
457
458
459
460
461
462
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
463
464
465
466
        return detections


class SSDFeatureExtractorVGG(nn.Module):
467
    def __init__(self, backbone: nn.Module, highres: bool):
468
469
470
471
472
473
474
475
476
477
478
        super().__init__()

        _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))

        # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
        backbone[maxpool3_pos].ceil_mode = True

        # parameters used for L2 regularization + rescaling
        self.scale_weight = nn.Parameter(torch.ones(512) * 20)

        # Multiple Feature maps - page 4, Fig 2 of SSD paper
479
        self.features = nn.Sequential(*backbone[:maxpool4_pos])  # until conv4_3
480
481

        # SSD300 case - page 4, Fig 2 of SSD paper
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        extra = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(1024, 256, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # conv8_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(512, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # conv9_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv10_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv11_2
                    nn.ReLU(inplace=True),
                ),
            ]
        )
510
511
        if highres:
            # Additional layers for the SSD512 case. See page 11, footernote 5.
512
513
514
515
516
517
518
519
            extra.append(
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=4),  # conv12_2
                    nn.ReLU(inplace=True),
                )
            )
520
521
522
523
524
525
526
        _xavier_init(extra)

        fc = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False),  # add modified maxpool5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6),  # FC6 with atrous
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1),  # FC7
527
            nn.ReLU(inplace=True),
528
529
        )
        _xavier_init(fc)
530
531
532
533
534
535
536
        extra.insert(
            0,
            nn.Sequential(
                *backbone[maxpool4_pos:-1],  # until conv5_3, skip maxpool5
                fc,
            ),
        )
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # L2 regularization + Rescaling of 1st block's feature map
        x = self.features(x)
        rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
        output = [rescaled]

        # Calculating Feature maps for the rest blocks
        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


553
def _vgg_extractor(backbone: VGG, highres: bool, trainable_layers: int):
554
    backbone = backbone.features
555
    # Gather the indices of maxpools. These are the locations of output blocks.
556
    stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
557
558
559
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
560
561
562
563
    torch._assert(
        0 <= trainable_layers <= num_stages,
        f"trainable_layers should be in the range [0, {num_stages}]. Instead got {trainable_layers}",
    )
564
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
565
566
567
568
569

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

570
    return SSDFeatureExtractorVGG(backbone, highres)
571
572


573
@register_model()
574
575
576
577
@handle_legacy_interface(
    weights=("pretrained", SSD300_VGG16_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", VGG16_Weights.IMAGENET1K_FEATURES),
)
578
def ssd300_vgg16(
579
580
    *,
    weights: Optional[SSD300_VGG16_Weights] = None,
581
    progress: bool = True,
582
583
    num_classes: Optional[int] = None,
    weights_backbone: Optional[VGG16_Weights] = VGG16_Weights.IMAGENET1K_FEATURES,
584
585
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
586
) -> SSD:
587
588
    """The SSD300 model is based on the `SSD: Single Shot MultiBox Detector
    <https://arxiv.org/abs/1512.02325>`_ paper.
589

590
591
    .. betastatus:: detection module

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
616
617
618

    Example:

619
        >>> model = torchvision.models.detection.ssd300_vgg16(weights=SSD300_VGG16_Weights.DEFAULT)
620
        >>> model.eval()
621
        >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
622
623
624
        >>> predictions = model(x)

    Args:
625
626
627
628
629
630
631
        weights (:class:`~torchvision.models.detection.SSD300_VGG16_Weights`, optional): The pretrained
                weights to use. See
                :class:`~torchvision.models.detection.SSD300_VGG16_Weights`
                below for more details, and possible values. By default, no
                pre-trained weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr
            Default is True.
632
        num_classes (int, optional): number of output classes of the model (including the background)
633
634
        weights_backbone (:class:`~torchvision.models.VGG16_Weights`, optional): The pretrained weights for the
            backbone
635
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
636
637
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 4.
638
639
640
641
642
643
644
        **kwargs: parameters passed to the ``torchvision.models.detection.SSD``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/ssd.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.SSD300_VGG16_Weights
        :members:
645
    """
646
647
648
    weights = SSD300_VGG16_Weights.verify(weights)
    weights_backbone = VGG16_Weights.verify(weights_backbone)

649
    if "size" in kwargs:
650
651
652
653
        warnings.warn("The size of the model is already fixed; ignoring the parameter.")

    if weights is not None:
        weights_backbone = None
654
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
655
656
    elif num_classes is None:
        num_classes = 91
657

658
    trainable_backbone_layers = _validate_trainable_layers(
659
        weights is not None or weights_backbone is not None, trainable_backbone_layers, 5, 4
660
    )
661

662
    # Use custom backbones more appropriate for SSD
663
    backbone = vgg16(weights=weights_backbone, progress=progress)
664
    backbone = _vgg_extractor(backbone, False, trainable_backbone_layers)
665
666
667
668
669
    anchor_generator = DefaultBoxGenerator(
        [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
        scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        steps=[8, 16, 32, 64, 100, 300],
    )
670
671
672
673
674
675

    defaults = {
        # Rescale the input in a way compatible to the backbone
        "image_mean": [0.48235, 0.45882, 0.40784],
        "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0],  # undo the 0-1 scaling of toTensor
    }
676
    kwargs: Any = {**defaults, **kwargs}
677
    model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
678
679
680
681

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

682
    return model
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "ssd300_vgg16_coco": SSD300_VGG16_Weights.COCO_V1.url,
    }
)


backbone_urls = _ModelURLs(
    {
        # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses
        # the same input standardization method as the paper.
        # Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
        # Only the `features` weights have proper values, those on the `classifier` module are filled with nans.
        "vgg16_features": VGG16_Weights.IMAGENET1K_FEATURES.url,
    }
)