googlenet.py 10.4 KB
Newer Older
1
2
from __future__ import division

3
4
import warnings
from collections import namedtuple
5
6
7
import torch
import torch.nn as nn
import torch.nn.functional as F
8
from torch.jit.annotations import Optional, Tuple
9
from torch import Tensor
10
from .utils import load_state_dict_from_url
11

12
__all__ = ['GoogLeNet', 'googlenet', "GoogLeNetOutputs", "_GoogLeNetOutputs"]
13
14
15
16
17
18

model_urls = {
    # GoogLeNet ported from TensorFlow
    'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}

19
20
21
22
23
24
25
GoogLeNetOutputs = namedtuple('GoogLeNetOutputs', ['logits', 'aux_logits2', 'aux_logits1'])
GoogLeNetOutputs.__annotations__ = {'logits': Tensor, 'aux_logits2': Optional[Tensor],
                                    'aux_logits1': Optional[Tensor]}

# Script annotations failed with _GoogleNetOutputs = namedtuple ...
# _GoogLeNetOutputs set here for backwards compat
_GoogLeNetOutputs = GoogLeNetOutputs
26

27

28
def googlenet(pretrained=False, progress=True, **kwargs):
29
30
    r"""GoogLeNet (Inception v1) model architecture from
    `"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
ekka's avatar
ekka committed
31

32
33
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
34
        progress (bool): If True, displays a progress bar of the download to stderr
35
        aux_logits (bool): If True, adds two auxiliary branches that can improve training.
36
            Default: *False* when pretrained is True otherwise *True*
37
        transform_input (bool): If True, preprocesses the input according to the method with which it
ekka's avatar
ekka committed
38
            was trained on ImageNet. Default: *False*
39
40
41
42
    """
    if pretrained:
        if 'transform_input' not in kwargs:
            kwargs['transform_input'] = True
43
44
        if 'aux_logits' not in kwargs:
            kwargs['aux_logits'] = False
45
        if kwargs['aux_logits']:
Francisco Massa's avatar
Francisco Massa committed
46
47
            warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, '
                          'so make sure to train them')
48
49
        original_aux_logits = kwargs['aux_logits']
        kwargs['aux_logits'] = True
50
51
        kwargs['init_weights'] = False
        model = GoogLeNet(**kwargs)
52
53
54
        state_dict = load_state_dict_from_url(model_urls['googlenet'],
                                              progress=progress)
        model.load_state_dict(state_dict)
55
56
        if not original_aux_logits:
            model.aux_logits = False
57
58
            model.aux1 = None
            model.aux2 = None
59
60
61
62
63
64
        return model

    return GoogLeNet(**kwargs)


class GoogLeNet(nn.Module):
65
    __constants__ = ['aux_logits', 'transform_input']
66

67
68
    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True,
                 blocks=None):
69
        super(GoogLeNet, self).__init__()
70
71
72
73
74
75
76
        if blocks is None:
            blocks = [BasicConv2d, Inception, InceptionAux]
        assert len(blocks) == 3
        conv_block = blocks[0]
        inception_block = blocks[1]
        inception_aux_block = blocks[2]

77
78
79
        self.aux_logits = aux_logits
        self.transform_input = transform_input

80
        self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)
81
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
82
83
        self.conv2 = conv_block(64, 64, kernel_size=1)
        self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)
84
85
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

86
87
        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
88
89
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

90
91
92
93
94
        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
95
96
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

97
98
        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)
99

100
        if aux_logits:
101
102
            self.aux1 = inception_aux_block(512, num_classes)
            self.aux2 = inception_aux_block(528, num_classes)
103
104
105
106
        else:
            self.aux1 = None
            self.aux2 = None
            
107
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
108
        self.dropout = nn.Dropout(0.2)
109
110
111
112
113
114
115
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
            self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
116
117
118
119
120
121
122
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                import scipy.stats as stats
                X = stats.truncnorm(-2, 2, scale=0.01)
                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                values = values.view(m.weight.size())
                with torch.no_grad():
                    m.weight.copy_(values)
123
124
125
126
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

127
128
    def _transform_input(self, x):
        # type: (Tensor) -> Tensor
129
130
131
132
133
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
134
        return x
135

136
137
    def _forward(self, x):
        # type: (Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]
138
        # N x 3 x 224 x 224
139
        x = self.conv1(x)
140
        # N x 64 x 112 x 112
141
        x = self.maxpool1(x)
142
        # N x 64 x 56 x 56
143
        x = self.conv2(x)
144
        # N x 64 x 56 x 56
145
        x = self.conv3(x)
146
        # N x 192 x 56 x 56
147
148
        x = self.maxpool2(x)

149
        # N x 192 x 28 x 28
150
        x = self.inception3a(x)
151
        # N x 256 x 28 x 28
152
        x = self.inception3b(x)
153
        # N x 480 x 28 x 28
154
        x = self.maxpool3(x)
155
        # N x 480 x 14 x 14
156
        x = self.inception4a(x)
157
        # N x 512 x 14 x 14
158
159
160
161
        aux1 = torch.jit.annotate(Optional[Tensor], None)
        if self.aux1 is not None:
            if self.training:
                aux1 = self.aux1(x)
162
163

        x = self.inception4b(x)
164
        # N x 512 x 14 x 14
165
        x = self.inception4c(x)
166
        # N x 512 x 14 x 14
167
        x = self.inception4d(x)
168
        # N x 528 x 14 x 14
169
170
171
172
        aux2 = torch.jit.annotate(Optional[Tensor], None)
        if self.aux2 is not None:
            if self.training:
                aux2 = self.aux2(x)
173
174

        x = self.inception4e(x)
175
        # N x 832 x 14 x 14
176
        x = self.maxpool4(x)
177
        # N x 832 x 7 x 7
178
        x = self.inception5a(x)
179
        # N x 832 x 7 x 7
180
        x = self.inception5b(x)
181
        # N x 1024 x 7 x 7
182
183

        x = self.avgpool(x)
184
        # N x 1024 x 1 x 1
185
        x = torch.flatten(x, 1)
186
        # N x 1024
187
188
        x = self.dropout(x)
        x = self.fc(x)
189
        # N x 1000 (num_classes)
190
        return x, aux2, aux1
191
192
193
194

    @torch.jit.unused
    def eager_outputs(self, x, aux2, aux1):
        # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> GoogLeNetOutputs
195
        if self.training and self.aux_logits:
taylanbil's avatar
taylanbil committed
196
            return _GoogLeNetOutputs(x, aux2, aux1)
197
198
        else:
            return x
199

200
201
202
203
204
205
206
207
208
209
210
211
    def forward(self, x):
        # type: (Tensor) -> GoogLeNetOutputs
        x = self._transform_input(x)
        x, aux1, aux2 = self._forward(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")
            return GoogLeNetOutputs(x, aux2, aux1)
        else:
            return self.eager_outputs(x, aux2, aux1)

212
213
214

class Inception(nn.Module):

215
216
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj,
                 conv_block=None):
217
        super(Inception, self).__init__()
218
219
220
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)
221
222

        self.branch2 = nn.Sequential(
223
224
            conv_block(in_channels, ch3x3red, kernel_size=1),
            conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1)
225
226
227
        )

        self.branch3 = nn.Sequential(
228
            conv_block(in_channels, ch5x5red, kernel_size=1),
Philip Meier's avatar
Philip Meier committed
229
230
            # Here, kernel_size=3 instead of kernel_size=5 is a known bug.
            # Please see https://github.com/pytorch/vision/issues/906 for details.
231
            conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1)
232
233
234
235
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
236
            conv_block(in_channels, pool_proj, kernel_size=1)
237
238
        )

239
    def _forward(self, x):
240
241
242
243
244
245
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
246
247
248
249
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
250
251
252
253
254
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):

255
    def __init__(self, in_channels, num_classes, conv_block=None):
256
        super(InceptionAux, self).__init__()
257
258
259
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv = conv_block(in_channels, 128, kernel_size=1)
260
261
262
263
264

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
265
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
266
        x = F.adaptive_avg_pool2d(x, (4, 4))
267
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
268
        x = self.conv(x)
269
        # N x 128 x 4 x 4
270
        x = torch.flatten(x, 1)
271
        # N x 2048
272
        x = F.relu(self.fc1(x), inplace=True)
Myosaki's avatar
Myosaki committed
273
        # N x 1024
274
        x = F.dropout(x, 0.7, training=self.training)
275
        # N x 1024
Myosaki's avatar
Myosaki committed
276
277
        x = self.fc2(x)
        # N x 1000 (num_classes)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

        return x


class BasicConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)