_geometry.py 84.2 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import datapoints
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _check_antialias,
15
    _compute_resized_output_size as __compute_resized_output_size,
16
    _get_perspective_coeffs,
17
    _interpolation_modes_from_int,
18
    InterpolationMode,
19
    pil_modes_mapping,
20
21
    pil_to_tensor,
    to_pil_image,
22
)
23

24
25
from torchvision.utils import _log_api_usage_once

Philip Meier's avatar
Philip Meier committed
26
from ._meta import clamp_bounding_boxes, convert_format_bounding_boxes, get_size_image_pil
27

28
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
29

30

31
32
33
34
35
36
37
38
39
40
41
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


42
def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
43
    if torch.jit.is_scripting():
44
        return horizontal_flip_image_tensor(inpt)
45
46
47
48
49

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
50
51


52
@_register_kernel_internal(horizontal_flip, torch.Tensor)
53
@_register_kernel_internal(horizontal_flip, datapoints.Image)
54
55
56
57
def horizontal_flip_image_tensor(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-1)


58
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
59
60
def horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
    return _FP.hflip(image)
61
62


63
@_register_kernel_internal(horizontal_flip, datapoints.Mask)
64
65
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image_tensor(mask)
66
67


68
def horizontal_flip_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
69
    bounding_boxes: torch.Tensor, format: datapoints.BoundingBoxFormat, canvas_size: Tuple[int, int]
70
) -> torch.Tensor:
71
    shape = bounding_boxes.shape
72

73
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
74

75
    if format == datapoints.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
76
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
77
    elif format == datapoints.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
78
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
79
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
80
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
81

82
    return bounding_boxes.reshape(shape)
83
84


85
86
87
88
89
90
91
92
93
@_register_kernel_internal(horizontal_flip, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: datapoints.BoundingBoxes) -> datapoints.BoundingBoxes:
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


@_register_kernel_internal(horizontal_flip, datapoints.Video)
94
95
96
97
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
    return horizontal_flip_image_tensor(video)


98
def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
99
    if torch.jit.is_scripting():
100
        return vertical_flip_image_tensor(inpt)
101
102
103
104
105

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
106
107


108
@_register_kernel_internal(vertical_flip, torch.Tensor)
109
@_register_kernel_internal(vertical_flip, datapoints.Image)
110
111
112
113
def vertical_flip_image_tensor(image: torch.Tensor) -> torch.Tensor:
    return image.flip(-2)


114
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
Philip Meier's avatar
Philip Meier committed
115
116
def vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
    return _FP.vflip(image)
117
118


119
@_register_kernel_internal(vertical_flip, datapoints.Mask)
120
121
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image_tensor(mask)
122
123


124
def vertical_flip_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
125
    bounding_boxes: torch.Tensor, format: datapoints.BoundingBoxFormat, canvas_size: Tuple[int, int]
126
) -> torch.Tensor:
127
    shape = bounding_boxes.shape
128

129
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
130

131
    if format == datapoints.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
132
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
133
    elif format == datapoints.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
134
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
135
    else:  # format == datapoints.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
136
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
137

138
    return bounding_boxes.reshape(shape)
139
140


141
142
143
144
145
146
@_register_kernel_internal(vertical_flip, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: datapoints.BoundingBoxes) -> datapoints.BoundingBoxes:
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)
147

148

149
150
151
@_register_kernel_internal(vertical_flip, datapoints.Video)
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
    return vertical_flip_image_tensor(video)
152
153


154
155
156
157
158
159
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


160
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
161
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
162
163
164
) -> List[int]:
    if isinstance(size, int):
        size = [size]
165
166
167
168
169
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
170
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
171
172


173
def resize(
174
    inpt: torch.Tensor,
175
176
177
178
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
179
) -> torch.Tensor:
180
181
182
183
184
185
186
    if torch.jit.is_scripting():
        return resize_image_tensor(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
187
188


189
@_register_kernel_internal(resize, torch.Tensor)
190
@_register_kernel_internal(resize, datapoints.Image)
191
192
193
def resize_image_tensor(
    image: torch.Tensor,
    size: List[int],
194
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
195
    max_size: Optional[int] = None,
196
    antialias: Optional[Union[str, bool]] = "warn",
197
) -> torch.Tensor:
198
    interpolation = _check_interpolation(interpolation)
199
200
    antialias = _check_antialias(img=image, antialias=antialias, interpolation=interpolation)
    assert not isinstance(antialias, str)
201
    antialias = False if antialias is None else antialias
202
203
204
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
205
206
207
208
    else:
        # The default of antialias should be True from 0.17, so we don't warn or
        # error if other interpolation modes are used. This is documented.
        antialias = False
209

210
    shape = image.shape
211
    numel = image.numel()
212
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
213
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
214

215
216
    if (new_height, new_width) == (old_height, old_width):
        return image
217
    elif numel > 0:
218
        image = image.reshape(-1, num_channels, old_height, old_width)
219

220
        dtype = image.dtype
221
222
223
224
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
225
226
227
228
229
230
231
        elif image.device.type == "cpu":
            # uint8 dtype support for bilinear and bicubic is limited to cpu and
            # according to our benchmarks, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
            if (interpolation == InterpolationMode.BILINEAR and "AVX2" in torch.backends.cpu.get_cpu_capability()) or (
                interpolation == InterpolationMode.BICUBIC
            ):
                acceptable_dtypes.append(torch.uint8)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
248
249
250
251
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
252
253
            image,
            size=[new_height, new_width],
254
255
            mode=interpolation.value,
            align_corners=align_corners,
256
257
            antialias=antialias,
        )
258

259
260
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
261
                # This path is hit on non-AVX archs, or on GPU.
262
                image = image.clamp_(min=0, max=255)
263
264
265
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
266

267
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
268
269
270


def resize_image_pil(
271
    image: PIL.Image.Image,
272
    size: Union[Sequence[int], int],
273
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
274
275
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
276
277
278
279
280
281
282
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

283
    interpolation = _check_interpolation(interpolation)
284
285
286
287
288

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
289
290


291
292
293
294
295
296
297
298
299
300
301
302
303
@_register_kernel_internal(resize, PIL.Image.Image)
def _resize_image_pil_dispatch(
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
    return resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)


304
305
306
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
307
308
309
310
        needs_squeeze = True
    else:
        needs_squeeze = False

311
    output = resize_image_tensor(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
312
313
314
315
316

    if needs_squeeze:
        output = output.squeeze(0)

    return output
317
318


319
320
321
322
323
324
325
326
@_register_kernel_internal(resize, datapoints.Mask, datapoint_wrapper=False)
def _resize_mask_dispatch(
    inpt: datapoints.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> datapoints.Mask:
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
    return datapoints.Mask.wrap_like(inpt, output)


327
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
328
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
329
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
330
331
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
332
333

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
334
        return bounding_boxes, canvas_size
335

336
337
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
338
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
339
    return (
340
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
341
342
        (new_height, new_width),
    )
343
344


345
346
347
348
349
350
351
352
353
354
355
@_register_kernel_internal(resize, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _resize_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> datapoints.BoundingBoxes:
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(resize, datapoints.Video)
356
357
358
def resize_video(
    video: torch.Tensor,
    size: List[int],
359
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
360
    max_size: Optional[int] = None,
361
    antialias: Optional[Union[str, bool]] = "warn",
362
363
364
365
) -> torch.Tensor:
    return resize_image_tensor(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)


366
def affine(
367
    inpt: torch.Tensor,
368
369
370
371
372
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
373
    fill: _FillTypeJIT = None,
374
    center: Optional[List[float]] = None,
375
) -> torch.Tensor:
376
    if torch.jit.is_scripting():
377
378
        return affine_image_tensor(
            inpt,
379
            angle=angle,
380
381
382
383
384
385
386
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
387
388
389
390
391
392
393
394
395
396
397
398
399
400

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
401
402


403
def _affine_parse_args(
404
    angle: Union[int, float],
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

447
448
449
450
451
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
452
453
454
455

    return angle, translate, shear, center


456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


552
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
553

554
555
556
557
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    shape = float_img.shape
    if shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(shape[0], -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones((shape[0], 1, shape[2], shape[3]), dtype=float_img.dtype, device=float_img.device)
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
574
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
575
576
577
578
579
580
581
582
583
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            bool_mask = mask < 0.5
            float_img[bool_mask] = fill_img.expand_as(float_img)[bool_mask]
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

584
585
586
    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img
587
588
589
590
591
592


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
593
    fill: _FillTypeJIT,
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


649
@_register_kernel_internal(affine, torch.Tensor)
650
@_register_kernel_internal(affine, datapoints.Image)
651
def affine_image_tensor(
652
    image: torch.Tensor,
653
    angle: Union[int, float],
654
655
656
    translate: List[float],
    scale: float,
    shear: List[float],
657
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
658
    fill: _FillTypeJIT = None,
659
660
    center: Optional[List[float]] = None,
) -> torch.Tensor:
661
662
    interpolation = _check_interpolation(interpolation)

663
664
    if image.numel() == 0:
        return image
665

666
    shape = image.shape
667
    ndim = image.ndim
668

669
670
671
672
673
674
675
676
677
678
    if ndim > 4:
        image = image.reshape((-1,) + shape[-3:])
        needs_unsquash = True
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
    else:
        needs_unsquash = False

    height, width = shape[-2:]
679
680
681
682
683
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
684
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
685

686
    translate_f = [float(t) for t in translate]
687
688
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

689
690
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

691
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
692
693
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
694
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
695
696
697
698
699

    if needs_unsquash:
        output = output.reshape(shape)

    return output
700
701


702
@_register_kernel_internal(affine, PIL.Image.Image)
703
def affine_image_pil(
704
    image: PIL.Image.Image,
705
    angle: Union[int, float],
706
707
708
    translate: List[float],
    scale: float,
    shear: List[float],
709
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
710
    fill: _FillTypeJIT = None,
711
712
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
713
    interpolation = _check_interpolation(interpolation)
714
715
716
717
718
719
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
Philip Meier's avatar
Philip Meier committed
720
        height, width = get_size_image_pil(image)
721
722
723
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

724
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
725
726


727
728
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
729
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
730
    canvas_size: Tuple[int, int],
731
732
733
734
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
735
    center: Optional[List[float]] = None,
736
    expand: bool = False,
737
) -> Tuple[torch.Tensor, Tuple[int, int]]:
738
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
739
        return bounding_boxes, canvas_size
740
741
742
743
744
745
746
747
748

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
        convert_format_bounding_boxes(
            bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY, inplace=True
749
750
751
        )
    ).reshape(-1, 4)

752
753
754
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
755

756
    if center is None:
Philip Meier's avatar
Philip Meier committed
757
        height, width = canvas_size
758
759
        center = [width * 0.5, height * 0.5]

760
761
762
763
764
765
766
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
767
        .reshape(2, 3)
768
769
        .T
    )
770
771
772
773
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
774
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
775
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
776
    # 2) Now let's transform the points using affine matrix
777
    transformed_points = torch.matmul(points, transposed_affine_matrix)
778
779
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
780
    transformed_points = transformed_points.reshape(-1, 4, 2)
781
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
782
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
783
784
785
786

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
787
        height, width = canvas_size
788
789
790
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
791
792
793
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
794
795
796
797
            ],
            dtype=dtype,
            device=device,
        )
798
        new_points = torch.matmul(points, transposed_affine_matrix)
799
        tr = torch.amin(new_points, dim=0, keepdim=True)
800
        # Translate bounding boxes
801
        out_bboxes.sub_(tr.repeat((1, 2)))
802
803
        # Estimate meta-data for image with inverted=True and with center=[0,0]
        affine_vector = _get_inverse_affine_matrix([0.0, 0.0], angle, translate, scale, shear)
804
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
805
        canvas_size = (new_height, new_width)
806

Philip Meier's avatar
Philip Meier committed
807
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=datapoints.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
808
    out_bboxes = convert_format_bounding_boxes(
809
810
811
812
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
813
    return out_bboxes, canvas_size
814
815


816
817
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
818
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
819
    canvas_size: Tuple[int, int],
820
    angle: Union[int, float],
821
822
823
824
825
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
826
827
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
828
        format=format,
Philip Meier's avatar
Philip Meier committed
829
        canvas_size=canvas_size,
830
831
832
833
834
835
836
837
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
838
839


840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
@_register_kernel_internal(affine, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _affine_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.BoundingBoxes:
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


863
864
def affine_mask(
    mask: torch.Tensor,
865
    angle: Union[int, float],
866
867
868
    translate: List[float],
    scale: float,
    shear: List[float],
869
    fill: _FillTypeJIT = None,
870
871
    center: Optional[List[float]] = None,
) -> torch.Tensor:
872
873
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
874
875
876
877
878
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = affine_image_tensor(
879
        mask,
880
881
882
883
884
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
885
        fill=fill,
886
887
888
        center=center,
    )

889
890
891
892
893
    if needs_squeeze:
        output = output.squeeze(0)

    return output

894

895
896
897
898
899
900
901
@_register_kernel_internal(affine, datapoints.Mask, datapoint_wrapper=False)
def _affine_mask_dispatch(
    inpt: datapoints.Mask,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
902
    fill: _FillTypeJIT = None,
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    center: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.Mask:
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(affine, datapoints.Video)
919
920
921
922
923
924
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
925
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
926
    fill: _FillTypeJIT = None,
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    center: Optional[List[float]] = None,
) -> torch.Tensor:
    return affine_image_tensor(
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


941
def rotate(
942
    inpt: torch.Tensor,
943
    angle: float,
944
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
945
    expand: bool = False,
946
    center: Optional[List[float]] = None,
947
948
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
949
950
951
    if torch.jit.is_scripting():
        return rotate_image_tensor(
            inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center
952
        )
953

954
    _log_api_usage_once(rotate)
955

956
957
958
959
960
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
961
@_register_kernel_internal(rotate, datapoints.Image)
962
def rotate_image_tensor(
963
    image: torch.Tensor,
964
    angle: float,
965
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
966
967
    expand: bool = False,
    center: Optional[List[float]] = None,
968
    fill: _FillTypeJIT = None,
969
) -> torch.Tensor:
970
971
    interpolation = _check_interpolation(interpolation)

972
973
    shape = image.shape
    num_channels, height, width = shape[-3:]
974

975
976
    center_f = [0.0, 0.0]
    if center is not None:
977
        if expand:
978
            # TODO: Do we actually want to warn, or just document this?
979
            warnings.warn("The provided center argument has no effect on the result if expand is True")
980
981
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
982
983
984
985

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
986

987
    if image.numel() > 0:
988
989
990
991
992
        image = image.reshape(-1, num_channels, height, width)

        _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

        ow, oh = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
993
        dtype = image.dtype if torch.is_floating_point(image) else torch.float32
994
995
        theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
        grid = _affine_grid(theta, w=width, h=height, ow=ow, oh=oh)
996
        output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
997
998

        new_height, new_width = output.shape[-2:]
999
    else:
1000
1001
        output = image
        new_width, new_height = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
1002

1003
    return output.reshape(shape[:-3] + (num_channels, new_height, new_width))
1004
1005


1006
@_register_kernel_internal(rotate, PIL.Image.Image)
1007
def rotate_image_pil(
1008
    image: PIL.Image.Image,
1009
    angle: float,
1010
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1011
1012
    expand: bool = False,
    center: Optional[List[float]] = None,
1013
    fill: _FillTypeJIT = None,
1014
) -> PIL.Image.Image:
1015
1016
    interpolation = _check_interpolation(interpolation)

1017
    if center is not None and expand:
1018
        warnings.warn("The provided center argument has no effect on the result if expand is True")
1019

1020
    return _FP.rotate(
1021
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1022
1023
1024
    )


1025
1026
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1027
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1028
    canvas_size: Tuple[int, int],
1029
1030
1031
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1032
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1033
1034
1035
    if center is not None and expand:
        warnings.warn("The provided center argument has no effect on the result if expand is True")

1036
1037
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1038
        format=format,
Philip Meier's avatar
Philip Meier committed
1039
        canvas_size=canvas_size,
1040
1041
1042
1043
1044
1045
1046
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1047
1048


1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
@_register_kernel_internal(rotate, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _rotate_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


1064
1065
def rotate_mask(
    mask: torch.Tensor,
1066
1067
1068
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1069
    fill: _FillTypeJIT = None,
1070
) -> torch.Tensor:
1071
1072
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1073
1074
1075
1076
1077
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = rotate_image_tensor(
1078
        mask,
1079
1080
1081
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1082
        fill=fill,
1083
1084
1085
        center=center,
    )

1086
1087
1088
1089
1090
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1091

1092
1093
1094
1095
1096
1097
@_register_kernel_internal(rotate, datapoints.Mask, datapoint_wrapper=False)
def _rotate_mask_dispatch(
    inpt: datapoints.Mask,
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1098
    fill: _FillTypeJIT = None,
1099
1100
1101
1102
1103
1104
1105
    **kwargs,
) -> datapoints.Mask:
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(rotate, datapoints.Video)
1106
1107
1108
def rotate_video(
    video: torch.Tensor,
    angle: float,
1109
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1110
1111
    expand: bool = False,
    center: Optional[List[float]] = None,
1112
    fill: _FillTypeJIT = None,
1113
1114
1115
1116
) -> torch.Tensor:
    return rotate_image_tensor(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


1117
def pad(
1118
    inpt: torch.Tensor,
1119
1120
1121
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
1122
) -> torch.Tensor:
1123
1124
    if torch.jit.is_scripting():
        return pad_image_tensor(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1125

1126
    _log_api_usage_once(pad)
1127

1128
1129
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1130
1131


1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1154

1155

1156
@_register_kernel_internal(pad, torch.Tensor)
1157
@_register_kernel_internal(pad, datapoints.Image)
1158
def pad_image_tensor(
1159
    image: torch.Tensor,
1160
1161
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1162
1163
    padding_mode: str = "constant",
) -> torch.Tensor:
1164
1165
1166
1167
1168
    # Be aware that while `padding` has order `[left, top, right, bottom]` has order, `torch_padding` uses
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1169
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1170
1171
1172
1173
1174
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1175
    if fill is None:
1176
1177
1178
1179
1180
1181
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1182
    else:
1183
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1184
1185
1186


def _pad_with_scalar_fill(
1187
    image: torch.Tensor,
1188
1189
1190
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1191
) -> torch.Tensor:
1192
1193
    shape = image.shape
    num_channels, height, width = shape[-3:]
1194

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1218

1219
1220
1221
1222
1223
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1224
        image = _pad_symmetric(image, torch_padding)
1225
1226

    new_height, new_width = image.shape[-2:]
1227

1228
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1229
1230


1231
# TODO: This should be removed once torch_pad supports non-scalar padding values
1232
def _pad_with_vector_fill(
1233
    image: torch.Tensor,
1234
    torch_padding: List[int],
1235
    fill: List[float],
1236
    padding_mode: str,
1237
1238
1239
1240
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1241
1242
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1243
    fill = torch.tensor(fill, dtype=image.dtype, device=image.device).reshape(-1, 1, 1)
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1256
pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1257
1258


1259
@_register_kernel_internal(pad, datapoints.Mask)
1260
1261
def pad_mask(
    mask: torch.Tensor,
1262
1263
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1264
1265
    padding_mode: str = "constant",
) -> torch.Tensor:
1266
1267
1268
    if fill is None:
        fill = 0

1269
    if isinstance(fill, (tuple, list)):
1270
1271
        raise ValueError("Non-scalar fill value is not supported")

1272
1273
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1274
1275
1276
1277
        needs_squeeze = True
    else:
        needs_squeeze = False

1278
    output = pad_image_tensor(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1279
1280
1281
1282
1283

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1284
1285


1286
1287
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1288
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1289
    canvas_size: Tuple[int, int],
1290
    padding: List[int],
vfdev's avatar
vfdev committed
1291
    padding_mode: str = "constant",
1292
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1293
1294
1295
1296
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1297
    left, right, top, bottom = _parse_pad_padding(padding)
1298

1299
    if format == datapoints.BoundingBoxFormat.XYXY:
1300
1301
1302
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1303
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1304

Philip Meier's avatar
Philip Meier committed
1305
    height, width = canvas_size
1306
1307
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1308
    canvas_size = (height, width)
1309

Philip Meier's avatar
Philip Meier committed
1310
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1311
1312


1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
@_register_kernel_internal(pad, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _pad_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(pad, datapoints.Video)
1328
1329
def pad_video(
    video: torch.Tensor,
1330
1331
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1332
1333
1334
1335
1336
    padding_mode: str = "constant",
) -> torch.Tensor:
    return pad_image_tensor(video, padding, fill=fill, padding_mode=padding_mode)


1337
def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1338
1339
1340
1341
    if torch.jit.is_scripting():
        return crop_image_tensor(inpt, top=top, left=left, height=height, width=width)

    _log_api_usage_once(crop)
1342

1343
1344
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1345

1346
1347

@_register_kernel_internal(crop, torch.Tensor)
1348
@_register_kernel_internal(crop, datapoints.Image)
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
def crop_image_tensor(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1367
crop_image_pil = _FP.crop
1368
_register_kernel_internal(crop, PIL.Image.Image)(crop_image_pil)
1369
1370


1371
1372
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1373
    format: datapoints.BoundingBoxFormat,
1374
1375
    top: int,
    left: int,
1376
1377
1378
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1379

1380
    # Crop or implicit pad if left and/or top have negative values:
1381
    if format == datapoints.BoundingBoxFormat.XYXY:
1382
        sub = [left, top, left, top]
1383
    else:
1384
1385
        sub = [left, top, 0, 0]

1386
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1387
    canvas_size = (height, width)
1388

Philip Meier's avatar
Philip Meier committed
1389
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1390
1391


1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
@_register_kernel_internal(crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, top: int, left: int, height: int, width: int
) -> datapoints.BoundingBoxes:
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(crop, datapoints.Mask)
1403
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = crop_image_tensor(mask, top, left, height, width)

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1416
1417


1418
@_register_kernel_internal(crop, datapoints.Video)
1419
1420
1421
1422
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
    return crop_image_tensor(video, top, left, height, width)


1423
def perspective(
1424
    inpt: torch.Tensor,
1425
1426
1427
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1428
    fill: _FillTypeJIT = None,
1429
    coefficients: Optional[List[float]] = None,
1430
) -> torch.Tensor:
1431
    if torch.jit.is_scripting():
1432
        return perspective_image_tensor(
1433
1434
1435
1436
1437
1438
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1439
        )
1440

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1453

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1469
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1470
    base_grid[..., 0].copy_(x_grid)
1471
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1472
1473
1474
1475
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1476
1477
1478
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1479
1480
1481
1482
1483

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1501
@_register_kernel_internal(perspective, torch.Tensor)
1502
@_register_kernel_internal(perspective, datapoints.Image)
1503
def perspective_image_tensor(
1504
    image: torch.Tensor,
1505
1506
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1507
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1508
    fill: _FillTypeJIT = None,
1509
    coefficients: Optional[List[float]] = None,
1510
) -> torch.Tensor:
1511
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1512
1513
    interpolation = _check_interpolation(interpolation)

1514
1515
1516
1517
    if image.numel() == 0:
        return image

    shape = image.shape
1518
    ndim = image.ndim
1519

1520
    if ndim > 4:
1521
        image = image.reshape((-1,) + shape[-3:])
1522
        needs_unsquash = True
1523
1524
1525
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1526
1527
1528
    else:
        needs_unsquash = False

1529
    _assert_grid_transform_inputs(
1530
1531
1532
1533
1534
1535
1536
1537
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1538
    oh, ow = shape[-2:]
1539
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1540
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1541
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1542
1543

    if needs_unsquash:
1544
        output = output.reshape(shape)
1545
1546

    return output
1547
1548


1549
@_register_kernel_internal(perspective, PIL.Image.Image)
1550
def perspective_image_pil(
1551
    image: PIL.Image.Image,
1552
1553
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1554
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BICUBIC,
1555
    fill: _FillTypeJIT = None,
1556
    coefficients: Optional[List[float]] = None,
1557
) -> PIL.Image.Image:
1558
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1559
    interpolation = _check_interpolation(interpolation)
1560
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1561
1562


1563
1564
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1565
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1566
    canvas_size: Tuple[int, int],
1567
1568
1569
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1570
) -> torch.Tensor:
1571
1572
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1573

1574
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1575

1576
1577
1578
1579
    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_boxes
    bounding_boxes = (
        convert_format_bounding_boxes(bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1580
    ).reshape(-1, 4)
1581

1582
1583
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1615
1616
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1617
1618
1619
1620
        dtype=dtype,
        device=device,
    )

1621
1622
1623
1624
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1625
1626
1627
1628
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1629
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1630
1631
1632
1633
1634
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1635
1636
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1637
    transformed_points = numer_points.div_(denom_points)
1638
1639
1640

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1641
    transformed_points = transformed_points.reshape(-1, 4, 2)
1642
1643
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1644
1645
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1646
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1647
        canvas_size=canvas_size,
1648
    )
1649
1650
1651

    # out_bboxes should be of shape [N boxes, 4]

1652
    return convert_format_bounding_boxes(
1653
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1654
    ).reshape(original_shape)
1655
1656


1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
@_register_kernel_internal(perspective, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _perspective_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.BoundingBoxes:
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


1676
1677
def perspective_mask(
    mask: torch.Tensor,
1678
1679
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1680
    fill: _FillTypeJIT = None,
1681
    coefficients: Optional[List[float]] = None,
1682
) -> torch.Tensor:
1683
1684
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1685
1686
1687
1688
1689
        needs_squeeze = True
    else:
        needs_squeeze = False

    output = perspective_image_tensor(
1690
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1691
    )
1692

1693
1694
1695
1696
1697
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1698

1699
1700
1701
1702
1703
@_register_kernel_internal(perspective, datapoints.Mask, datapoint_wrapper=False)
def _perspective_mask_dispatch(
    inpt: datapoints.Mask,
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1704
    fill: _FillTypeJIT = None,
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
    coefficients: Optional[List[float]] = None,
    **kwargs,
) -> datapoints.Mask:
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(perspective, datapoints.Video)
1719
1720
def perspective_video(
    video: torch.Tensor,
1721
1722
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1723
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1724
    fill: _FillTypeJIT = None,
1725
    coefficients: Optional[List[float]] = None,
1726
) -> torch.Tensor:
1727
1728
1729
    return perspective_image_tensor(
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1730
1731


1732
def elastic(
1733
    inpt: torch.Tensor,
1734
    displacement: torch.Tensor,
1735
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1736
1737
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
1738
1739
1740
1741
1742
1743
1744
    if torch.jit.is_scripting():
        return elastic_image_tensor(inpt, displacement=displacement, interpolation=interpolation, fill=fill)

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1745
1746


1747
1748
1749
elastic_transform = elastic


1750
@_register_kernel_internal(elastic, torch.Tensor)
1751
@_register_kernel_internal(elastic, datapoints.Image)
1752
def elastic_image_tensor(
1753
    image: torch.Tensor,
1754
    displacement: torch.Tensor,
1755
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1756
    fill: _FillTypeJIT = None,
1757
) -> torch.Tensor:
1758
1759
    interpolation = _check_interpolation(interpolation)

1760
1761
1762
1763
    if image.numel() == 0:
        return image

    shape = image.shape
1764
    ndim = image.ndim
1765

1766
    device = image.device
1767
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1768
1769
1770
1771
1772
1773
1774

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1775
1776
1777
    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be casted to float32 and all computations will be done with float32
    # We can fix this later if needed
1778

1779
1780
1781
1782
    expected_shape = (1,) + shape[-2:] + (2,)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1783
    if ndim > 4:
1784
        image = image.reshape((-1,) + shape[-3:])
1785
        needs_unsquash = True
1786
1787
1788
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1789
1790
1791
    else:
        needs_unsquash = False

1792
1793
    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1794

1795
1796
1797
    image_height, image_width = shape[-2:]
    grid = _create_identity_grid((image_height, image_width), device=device, dtype=dtype).add_(displacement)
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1798
1799

    if needs_unsquash:
1800
        output = output.reshape(shape)
1801

1802
1803
1804
    if is_cpu_half:
        output = output.to(torch.float16)

1805
    return output
1806
1807


1808
@_register_kernel_internal(elastic, PIL.Image.Image)
1809
def elastic_image_pil(
1810
    image: PIL.Image.Image,
1811
    displacement: torch.Tensor,
1812
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1813
    fill: _FillTypeJIT = None,
1814
) -> PIL.Image.Image:
1815
    t_img = pil_to_tensor(image)
1816
    output = elastic_image_tensor(t_img, displacement, interpolation=interpolation, fill=fill)
1817
    return to_pil_image(output, mode=image.mode)
1818
1819


1820
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1821
    sy, sx = size
1822
1823
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1824
1825
    base_grid[..., 0].copy_(x_grid)

1826
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1827
1828
1829
1830
1831
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1832
1833
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1834
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1835
    canvas_size: Tuple[int, int],
1836
1837
    displacement: torch.Tensor,
) -> torch.Tensor:
1838
1839
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1840

1841
    # TODO: add in docstring about approximation we are doing for grid inversion
1842
1843
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1844
1845
1846

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1847

1848
1849
1850
1851
    original_shape = bounding_boxes.shape
    # TODO: first cast to float if bbox is int64 before convert_format_bounding_boxes
    bounding_boxes = (
        convert_format_bounding_boxes(bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY)
1852
    ).reshape(-1, 4)
1853

Philip Meier's avatar
Philip Meier committed
1854
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1855
1856
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1857
    inv_grid = id_grid.sub_(displacement)
1858
1859

    # Get points from bboxes
1860
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1861
1862
1863
1864
1865
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1866
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1867
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1868
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1869

1870
    transformed_points = transformed_points.reshape(-1, 4, 2)
1871
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1872
1873
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1874
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1875
        canvas_size=canvas_size,
1876
    )
1877

1878
    return convert_format_bounding_boxes(
1879
        out_bboxes, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1880
    ).reshape(original_shape)
1881
1882


1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
@_register_kernel_internal(elastic, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _elastic_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> datapoints.BoundingBoxes:
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output)


1893
1894
1895
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
1896
    fill: _FillTypeJIT = None,
1897
) -> torch.Tensor:
1898
1899
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1900
1901
1902
1903
        needs_squeeze = True
    else:
        needs_squeeze = False

1904
    output = elastic_image_tensor(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1905
1906
1907
1908
1909

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1910
1911


1912
1913
@_register_kernel_internal(elastic, datapoints.Mask, datapoint_wrapper=False)
def _elastic_mask_dispatch(
1914
    inpt: datapoints.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
1915
1916
1917
1918
1919
1920
) -> datapoints.Mask:
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(elastic, datapoints.Video)
1921
1922
1923
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1924
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1925
    fill: _FillTypeJIT = None,
1926
) -> torch.Tensor:
1927
    return elastic_image_tensor(video, displacement, interpolation=interpolation, fill=fill)
1928
1929


1930
def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1931
1932
1933
1934
1935
1936
1937
    if torch.jit.is_scripting():
        return center_crop_image_tensor(inpt, output_size=output_size)

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1938
1939


1940
1941
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1942
1943
        s = int(output_size)
        return [s, s]
1944
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1945
        return [output_size[0], output_size[0]]
1946
1947
    else:
        return list(output_size)
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1967
@_register_kernel_internal(center_crop, torch.Tensor)
1968
@_register_kernel_internal(center_crop, datapoints.Image)
1969
def center_crop_image_tensor(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1970
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1971
1972
1973
1974
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1975
1976
1977

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1978
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1979

1980
        image_height, image_width = image.shape[-2:]
1981
        if crop_width == image_width and crop_height == image_height:
1982
            return image
1983
1984

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1985
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1986
1987


1988
@_register_kernel_internal(center_crop, PIL.Image.Image)
1989
def center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1990
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
1991
    image_height, image_width = get_size_image_pil(image)
1992
1993
1994

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1995
        image = pad_image_pil(image, padding_ltrb, fill=0)
1996

Philip Meier's avatar
Philip Meier committed
1997
        image_height, image_width = get_size_image_pil(image)
1998
        if crop_width == image_width and crop_height == image_height:
1999
            return image
2000
2001

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
2002
    return crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
2003
2004


2005
2006
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2007
    format: datapoints.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
2008
    canvas_size: Tuple[int, int],
2009
    output_size: List[int],
2010
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2011
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
2012
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
2013
2014
2015
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
2016
2017


2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
@_register_kernel_internal(center_crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _center_crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, output_size: List[int]
) -> datapoints.BoundingBoxes:
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)


@_register_kernel_internal(center_crop, datapoints.Mask)
2029
2030
2031
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
2032
2033
2034
2035
        needs_squeeze = True
    else:
        needs_squeeze = False

2036
    output = center_crop_image_tensor(image=mask, output_size=output_size)
2037
2038
2039
2040
2041

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2042
2043


2044
@_register_kernel_internal(center_crop, datapoints.Video)
2045
2046
2047
2048
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    return center_crop_image_tensor(video, output_size)


2049
def resized_crop(
2050
    inpt: torch.Tensor,
2051
2052
2053
2054
2055
2056
2057
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
2058
) -> torch.Tensor:
2059
    if torch.jit.is_scripting():
2060
        return resized_crop_image_tensor(
2061
2062
2063
2064
2065
2066
2067
2068
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2069
        )
2070

2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2084

2085
2086

@_register_kernel_internal(resized_crop, torch.Tensor)
2087
@_register_kernel_internal(resized_crop, datapoints.Image)
2088
def resized_crop_image_tensor(
2089
    image: torch.Tensor,
2090
2091
2092
2093
2094
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2095
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2096
    antialias: Optional[Union[str, bool]] = "warn",
2097
) -> torch.Tensor:
2098
2099
    image = crop_image_tensor(image, top, left, height, width)
    return resize_image_tensor(image, size, interpolation=interpolation, antialias=antialias)
2100
2101
2102


def resized_crop_image_pil(
2103
    image: PIL.Image.Image,
2104
2105
2106
2107
2108
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2109
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2110
) -> PIL.Image.Image:
2111
2112
    image = crop_image_pil(image, top, left, height, width)
    return resize_image_pil(image, size, interpolation=interpolation)
2113
2114


2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
@_register_kernel_internal(resized_crop, PIL.Image.Image)
def resized_crop_image_pil_dispatch(
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
    return resized_crop_image_pil(
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2139
2140
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2141
    format: datapoints.BoundingBoxFormat,
2142
2143
2144
2145
2146
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2147
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


@_register_kernel_internal(resized_crop, datapoints.BoundingBoxes, datapoint_wrapper=False)
def _resized_crop_bounding_boxes_dispatch(
    inpt: datapoints.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> datapoints.BoundingBoxes:
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
    return datapoints.BoundingBoxes.wrap_like(inpt, output, canvas_size=canvas_size)
2160
2161


2162
def resized_crop_mask(
2163
2164
2165
2166
2167
2168
2169
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2170
2171
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2172
2173


2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
@_register_kernel_internal(resized_crop, datapoints.Mask, datapoint_wrapper=False)
def _resized_crop_mask_dispatch(
    inpt: datapoints.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> datapoints.Mask:
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
    return datapoints.Mask.wrap_like(inpt, output)


@_register_kernel_internal(resized_crop, datapoints.Video)
2185
2186
2187
2188
2189
2190
2191
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2192
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2193
    antialias: Optional[Union[str, bool]] = "warn",
2194
2195
2196
2197
2198
2199
) -> torch.Tensor:
    return resized_crop_image_tensor(
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2200
def five_crop(
2201
2202
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2203
2204
2205
2206
2207
2208
2209
    if torch.jit.is_scripting():
        return five_crop_image_tensor(inpt, size=size)

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2210
2211


2212
2213
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2214
2215
        s = int(size)
        size = [s, s]
2216
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2217
2218
        s = size[0]
        size = [s, s]
2219
2220
2221
2222
2223
2224
2225

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2226
2227
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(five_crop, datapoints.Image)
2228
def five_crop_image_tensor(
2229
    image: torch.Tensor, size: List[int]
2230
2231
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2232
    image_height, image_width = image.shape[-2:]
2233
2234

    if crop_width > image_width or crop_height > image_height:
2235
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2236

2237
2238
2239
2240
2241
    tl = crop_image_tensor(image, 0, 0, crop_height, crop_width)
    tr = crop_image_tensor(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image_tensor(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image_tensor(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image_tensor(image, [crop_height, crop_width])
2242
2243
2244
2245

    return tl, tr, bl, br, center


2246
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
2247
def five_crop_image_pil(
2248
    image: PIL.Image.Image, size: List[int]
2249
2250
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
Philip Meier's avatar
Philip Meier committed
2251
    image_height, image_width = get_size_image_pil(image)
2252
2253

    if crop_width > image_width or crop_height > image_height:
2254
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2255

2256
2257
2258
2259
2260
    tl = crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image_pil(image, [crop_height, crop_width])
2261
2262
2263
2264

    return tl, tr, bl, br, center


2265
@_register_five_ten_crop_kernel_internal(five_crop, datapoints.Video)
2266
2267
2268
2269
2270
2271
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    return five_crop_image_tensor(video, size)


2272
def ten_crop(
2273
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
2274
) -> Tuple[
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
2285
]:
2286
2287
2288
2289
2290
2291
2292
    if torch.jit.is_scripting():
        return ten_crop_image_tensor(inpt, size=size, vertical_flip=vertical_flip)

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2293
2294


2295
2296
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
@_register_five_ten_crop_kernel_internal(ten_crop, datapoints.Image)
Philip Meier's avatar
Philip Meier committed
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
def ten_crop_image_tensor(
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
    non_flipped = five_crop_image_tensor(image, size)
2312
2313

    if vertical_flip:
2314
        image = vertical_flip_image_tensor(image)
2315
    else:
2316
        image = horizontal_flip_image_tensor(image)
2317

Philip Meier's avatar
Philip Meier committed
2318
    flipped = five_crop_image_tensor(image, size)
2319

Philip Meier's avatar
Philip Meier committed
2320
    return non_flipped + flipped
2321
2322


2323
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
Philip Meier's avatar
Philip Meier committed
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
def ten_crop_image_pil(
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
    non_flipped = five_crop_image_pil(image, size)
2339
2340

    if vertical_flip:
2341
        image = vertical_flip_image_pil(image)
2342
    else:
2343
        image = horizontal_flip_image_pil(image)
2344

Philip Meier's avatar
Philip Meier committed
2345
2346
2347
2348
2349
    flipped = five_crop_image_pil(image, size)

    return non_flipped + flipped


2350
@_register_five_ten_crop_kernel_internal(ten_crop, datapoints.Video)
Philip Meier's avatar
Philip Meier committed
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2365
    return ten_crop_image_tensor(video, size, vertical_flip=vertical_flip)