test_transforms_v2.py 51.5 KB
Newer Older
1
2
3
import itertools
import pathlib
import random
4
import textwrap
5
6
7
8
9
10
11
12
13
14
15
import warnings

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

from common_utils import (
    assert_equal,
16
    assert_run_python_script,
17
    cpu_and_cuda,
18
19
20
21
22
23
24
25
26
27
28
29
    make_bounding_box,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
    make_video,
    make_videos,
)
from torch.utils._pytree import tree_flatten, tree_unflatten
from torchvision import datapoints
from torchvision.ops.boxes import box_iou
30
from torchvision.transforms.functional import to_pil_image
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from torchvision.transforms.v2 import functional as F
from torchvision.transforms.v2.utils import check_type, is_simple_tensor, query_chw


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
48
49
    for bounding_boxes in make_bounding_boxes(*args, **kwargs):
        yield bounding_boxes.data
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
71
        if isinstance(value, (datapoints.BoundingBoxes, datapoints.Mask)):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            # AA transforms don't support bounding boxes or masks
            continue
        elif check_type(value, (datapoints.Image, datapoints.Video, is_simple_tensor, PIL.Image.Image)):
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
        elif check_type(value, (datapoints.Image, datapoints.Video, is_simple_tensor)):
            # normalize doesn't support integer images
106
            value = F.to_dtype(value, torch.float32, scale=True)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.Grayscale(), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomGrayscale(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
127
            (transforms.RandomChannelPermutation(), None),
128
129
130
131
132
133
134
135
136
137
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
138
139
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
140
            (transforms.RandomRotation(degrees=30), None),
141
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
142
143
144
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.RandomZoomOut(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
145
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
146
            (transforms.ClampBoundingBoxes(), None),
147
            (transforms.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.CXCYWH), None),
148
            (transforms.ConvertImageDtype(), None),
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
175
    @pytest.mark.parametrize("device", cpu_and_cuda())
176
    def test_common(self, transform, adapter, container_type, image_or_video, device):
Philip Meier's avatar
Philip Meier committed
177
        canvas_size = F.get_size(image_or_video)
178
179
        input = dict(
            image_or_video=image_or_video,
Philip Meier's avatar
Philip Meier committed
180
181
182
            image_datapoint=make_image(size=canvas_size),
            video_datapoint=make_video(size=canvas_size),
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
183
            bounding_boxes_xyxy=make_bounding_box(
Philip Meier's avatar
Philip Meier committed
184
                format=datapoints.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
185
            ),
186
            bounding_boxes_xywh=make_bounding_box(
Philip Meier's avatar
Philip Meier committed
187
                format=datapoints.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
188
            ),
189
            bounding_boxes_cxcywh=make_bounding_box(
Philip Meier's avatar
Philip Meier committed
190
                format=datapoints.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
191
            ),
192
            bounding_boxes_degenerate_xyxy=datapoints.BoundingBoxes(
193
194
195
196
197
198
199
200
201
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
                format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
202
                canvas_size=canvas_size,
203
            ),
204
            bounding_boxes_degenerate_xywh=datapoints.BoundingBoxes(
205
206
207
208
209
210
211
212
213
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
214
                canvas_size=canvas_size,
215
            ),
216
            bounding_boxes_degenerate_cxcywh=datapoints.BoundingBoxes(
217
218
219
220
221
222
223
224
225
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
226
                canvas_size=canvas_size,
227
            ),
Philip Meier's avatar
Philip Meier committed
228
229
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

264
            if isinstance(input_item, datapoints.BoundingBoxes) and not isinstance(
265
266
267
268
269
270
271
272
273
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
        for format in list(datapoints.BoundingBoxFormat):
            sample = dict(
Philip Meier's avatar
Philip Meier committed
274
                boxes=datapoints.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
275
276
                labels=torch.tensor([3]),
            )
277
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
278
279
280
281
282
283
284
285
286
287
288
289
290

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
291
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.RandomResizedCrop([16, 16], antialias=True),
                itertools.chain(
                    make_images(extra_dims=[(4,)]),
                    make_vanilla_tensor_images(),
                    make_pil_images(),
                    make_videos(extra_dims=[()]),
                ),
            )
        ]
    )
    def test_random_resized_crop(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
def test_simple_tensor_heuristic(flat_inputs):
    def split_on_simple_tensor(to_split):
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
        # 1. The first simple tensor. If none is present, this will be `None`
        # 2. A list of the remaining simple tensors
        # 3. A list of all other items
        simple_tensors = []
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
            (simple_tensors if is_simple_tensor(inpt) else others).append(item)
        return simple_tensors[0] if simple_tensors else None, simple_tensors[1:], others

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

    first_simple_tensor_input, other_simple_tensor_inputs, other_inputs = split_on_simple_tensor(flat_inputs)

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

    first_simple_tensor_output, other_simple_tensor_outputs, other_outputs = split_on_simple_tensor(transformed_sample)

    if first_simple_tensor_input is not None:
        if other_inputs:
            assert not transform.was_applied(first_simple_tensor_output, first_simple_tensor_input)
        else:
            assert transform.was_applied(first_simple_tensor_output, first_simple_tensor_input)

    for output, inpt in zip(other_simple_tensor_outputs, other_simple_tensor_inputs):
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestPad:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.Pad("abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.Pad([-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.Pad(12, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.Pad(12, padding_mode="abc")


class TestRandomZoomOut:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomZoomOut(fill="abc")

        with pytest.raises(TypeError, match="should be a sequence of length"):
            transforms.RandomZoomOut(0, side_range=0)

        with pytest.raises(ValueError, match="Invalid canvas side range"):
            transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
Philip Meier's avatar
Philip Meier committed
436
    def test__get_params(self, fill, side_range):
437
438
        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

Philip Meier's avatar
Philip Meier committed
439
440
        h, w = size = (24, 32)
        image = make_image(size)
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

        params = transform._get_params([image])

        assert len(params["padding"]) == 4
        assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
        assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h


class TestRandomCrop:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")

    @pytest.mark.parametrize("padding", [None, 1, [2, 3], [1, 2, 3, 4]])
    @pytest.mark.parametrize("size, pad_if_needed", [((10, 10), False), ((50, 25), True)])
Philip Meier's avatar
Philip Meier committed
470
471
472
    def test__get_params(self, padding, pad_if_needed, size):
        h, w = size = (24, 32)
        image = make_image(size)
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

        transform = transforms.RandomCrop(size, padding=padding, pad_if_needed=pad_if_needed)
        params = transform._get_params([image])

        if padding is not None:
            if isinstance(padding, int):
                pad_top = pad_bottom = pad_left = pad_right = padding
            elif isinstance(padding, list) and len(padding) == 2:
                pad_left = pad_right = padding[0]
                pad_top = pad_bottom = padding[1]
            elif isinstance(padding, list) and len(padding) == 4:
                pad_left, pad_top, pad_right, pad_bottom = padding

            h += pad_top + pad_bottom
            w += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        if pad_if_needed:
            if w < size[1]:
                diff = size[1] - w
                pad_left += diff
                pad_right += diff
                w += 2 * diff
            if h < size[0]:
                diff = size[0] - h
                pad_top += diff
                pad_bottom += diff
                h += 2 * diff

        padding = [pad_left, pad_top, pad_right, pad_bottom]

        assert 0 <= params["top"] <= h - size[0] + 1
        assert 0 <= params["left"] <= w - size[1] + 1
        assert params["height"] == size[0]
        assert params["width"] == size[1]
        assert params["needs_pad"] is any(padding)
        assert params["padding"] == padding


class TestGaussianBlur:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(
            TypeError, match="sigma should be a single int or float or a list/tuple with length 2 floats."
        ):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == 10
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]


class TestRandomPerspective:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Argument distortion_scale value should be between 0 and 1"):
            transforms.RandomPerspective(distortion_scale=-1.0)

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomPerspective(0.5, fill="abc")

Philip Meier's avatar
Philip Meier committed
552
    def test__get_params(self):
553
554
        dscale = 0.5
        transform = transforms.RandomPerspective(dscale)
Philip Meier's avatar
Philip Meier committed
555
556

        image = make_image((24, 32))
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

        params = transform._get_params([image])

        assert "coefficients" in params
        assert len(params["coefficients"]) == 8


class TestElasticTransform:
    def test_assertions(self):

        with pytest.raises(TypeError, match="alpha should be float or a sequence of floats"):
            transforms.ElasticTransform({})

        with pytest.raises(ValueError, match="alpha is a sequence its length should be one of 2"):
            transforms.ElasticTransform([1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="alpha should be a sequence of floats"):
            transforms.ElasticTransform([1, 2])

        with pytest.raises(TypeError, match="sigma should be float or a sequence of floats"):
            transforms.ElasticTransform(1.0, {})

        with pytest.raises(ValueError, match="sigma is a sequence its length should be one of 2"):
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="sigma should be a sequence of floats"):
            transforms.ElasticTransform(1.0, [1, 2])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

Philip Meier's avatar
Philip Meier committed
588
    def test__get_params(self):
589
590
591
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
Philip Meier's avatar
Philip Meier committed
592
593
594

        h, w = size = (24, 32)
        image = make_image(size)
595
596
597
598
599
600
601
602
603
604

        params = transform._get_params([image])

        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()


class TestRandomErasing:
Philip Meier's avatar
Philip Meier committed
605
    def test_assertions(self):
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

Philip Meier's avatar
Philip Meier committed
621
        image = make_image((24, 32))
622
623
624
625
626
627
628

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([image])

    @pytest.mark.parametrize("value", [5.0, [1, 2, 3], "random"])
Philip Meier's avatar
Philip Meier committed
629
630
631
    def test__get_params(self, value):
        image = make_image((24, 32))
        num_channels, height, width = F.get_dimensions(image)
632
633
634
635
636
637
638
639
640

        transform = transforms.RandomErasing(value=value)
        params = transform._get_params([image])

        v = params["v"]
        h, w = params["h"], params["w"]
        i, j = params["i"], params["j"]
        assert isinstance(v, torch.Tensor)
        if value == "random":
Philip Meier's avatar
Philip Meier committed
641
            assert v.shape == (num_channels, h, w)
642
643
644
        elif isinstance(value, (int, float)):
            assert v.shape == (1, 1, 1)
        elif isinstance(value, (list, tuple)):
Philip Meier's avatar
Philip Meier committed
645
            assert v.shape == (num_channels, 1, 1)
646

Philip Meier's avatar
Philip Meier committed
647
648
        assert 0 <= i <= height - h
        assert 0 <= j <= width - w
649
650
651
652
653


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
654
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


class TestToImageTensor:
    @pytest.mark.parametrize(
        "inpt_type",
672
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
673
674
675
676
677
678
679
680
681
682
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
            "torchvision.transforms.v2.functional.to_image_tensor",
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToImageTensor()
        transform(inpt)
683
        if inpt_type in (datapoints.BoundingBoxes, datapoints.Image, str, int):
684
685
686
687
688
689
690
691
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToImagePIL:
    @pytest.mark.parametrize(
        "inpt_type",
692
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
693
694
695
696
697
698
699
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.v2.functional.to_image_pil")

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToImagePIL()
        transform(inpt)
700
        if inpt_type in (datapoints.BoundingBoxes, PIL.Image.Image, str, int):
701
702
703
704
705
706
707
708
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
709
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
710
711
712
713
714
715
716
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.v2.functional.to_image_pil")

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
717
        if inpt_type in (PIL.Image.Image, datapoints.BoundingBoxes, str, int):
718
719
720
721
722
723
724
725
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
726
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
727
728
729
730
731
732
733
734
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
735
        if inpt_type in (datapoints.Image, torch.Tensor, datapoints.BoundingBoxes, str, int):
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
766
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
767
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
768
769
770


class TestRandomIoUCrop:
771
    @pytest.mark.parametrize("device", cpu_and_cuda())
772
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
773
774
775
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
776
        bboxes = datapoints.BoundingBoxes(
777
778
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
779
            canvas_size=size,
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
        image = datapoints.Image(torch.rand(1, 3, 4, 4))
Philip Meier's avatar
Philip Meier committed
812
        bboxes = datapoints.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
831
832
833
834
        size = (32, 24)
        image = make_image(size)
        bboxes = make_bounding_box(format="XYXY", canvas_size=size, batch_dims=(6,))
        masks = make_detection_mask(size, num_objects=6)
835
836
837
838
839
840
841
842
843
844
845

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
846
        assert isinstance(output_bboxes, datapoints.BoundingBoxes)
847
848
849
850
851
852
853
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
        assert isinstance(output_masks, datapoints.Mask)


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
854
855
    def test__get_params(self):
        canvas_size = (24, 32)
856
857
858
859
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
860
861

        sample = make_image(canvas_size)
862
863
864
865
866
867
868
869
870
871
872
873

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
874
875
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
876

Philip Meier's avatar
Philip Meier committed
877
878
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
879
880
881
882


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
883
884
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
885

886
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
887

Philip Meier's avatar
Philip Meier committed
888
        sample = make_image(canvas_size)
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
            datapoints.Image(122 * torch.ones(1, 3, 8, 8)),
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
929
            with pytest.raises(TypeError, match="does not support PIL images"):
930
931
932
933
934
935
936
937
938
939
940
941
942
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

943
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
            datapoints.Video(torch.zeros(1, 10, 3, 8, 8)),
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
990
        F.resized_crop(datapoints.Image(tensor_img), 0, 0, 10, 10, (20, 20))
991
992

    with pytest.warns(UserWarning, match=match):
993
        F.resize(datapoints.Video(tensor_video), (20, 20))
994
    with pytest.warns(UserWarning, match=match):
995
        F.resized_crop(datapoints.Video(tensor_video), 0, 0, 10, 10, (20, 20))
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

1009
1010
        F.resized_crop(datapoints.Image(tensor_img), 0, 0, 10, 10, (20, 20), antialias=True)
        F.resized_crop(datapoints.Video(tensor_video), 0, 0, 10, 10, (20, 20), antialias=True)
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImageTensor))
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
        assert is_simple_tensor(image)

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

1036
1037
1038
1039
1040
1041
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1042
1043
    t = transforms.Compose(
        [
1044
            transforms.RandomResizedCrop((224, 224), antialias=True),
1045
1046
1047
1048
1049
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
1050
            to_tensor,
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImageTensor))
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
1081
1082
1083
1084
1085
1086
1087

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1088
1089
1090
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
1091
            to_tensor,
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0})
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
1105
            to_tensor,
1106
1107
1108
1109
1110
1111
1112
1113
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
1114
            to_tensor,
1115
1116
1117
1118
1119
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
1120
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), datapoints.Mask: 0}, p=1),
1121
1122
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1123
            to_tensor,
1124
1125
1126
1127
1128
1129
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1130
            to_tensor,
1131
1132
1133
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
1134
        t += [transforms.SanitizeBoundingBoxes()]
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
        assert is_simple_tensor(image)

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
Philip Meier's avatar
Philip Meier committed
1152
    boxes = datapoints.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

    masks = datapoints.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

1165
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not datapoints.Image:
1166
1167
1168
1169
1170
1171
1172
1173
1174
        assert is_simple_tensor(out["image"])
    else:
        assert isinstance(out["image"], datapoints.Image)
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
1175
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
1176
1177
1178
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
1179
        (True, "ssd"): 5,
1180
1181
1182
1183
1184
1185
1186
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
1187
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
1188
1189
1190
1191
1192
1193
1194
1195
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

1223
    boxes = datapoints.BoundingBoxes(
1224
1225
        boxes,
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1226
        canvas_size=(H, W),
1227
1228
1229
    )

    masks = datapoints.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
1230
1231
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
1232
    sample = {
1233
        "image": input_img,
1234
1235
        "labels": labels,
        "boxes": boxes,
1236
        "whatever": whatever,
1237
1238
1239
1240
        "None": None,
        "masks": masks,
    }

1241
1242
1243
1244
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1245
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1246

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1262

1263
    assert isinstance(out_boxes, datapoints.BoundingBoxes)
1264
1265
    assert isinstance(out_masks, datapoints.Mask)

1266
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1267
        assert out_labels is labels
1268
    else:
1269
1270
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1271
        # This works because we conveniently set labels to arange(num_boxes)
1272
        assert out_labels.tolist() == valid_indices
1273
1274
1275
1276


def test_sanitize_bounding_boxes_errors():

1277
    good_bbox = datapoints.BoundingBoxes(
1278
1279
        [[0, 0, 10, 10]],
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1280
        canvas_size=(20, 20),
1281
1282
1283
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1284
        transforms.SanitizeBoundingBoxes(min_size=0)
1285
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1286
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1287
1288
1289

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1290
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1291
1292
1293

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1294
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1295
1296
1297

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1298
        transforms.SanitizeBoundingBoxes()(different_sizes)
1299

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

@pytest.mark.parametrize(
    "import_statement",
    (
        "from torchvision.transforms import v2",
        "import torchvision.transforms.v2",
        "from torchvision.transforms.v2 import Resize",
        "import torchvision.transforms.v2.functional",
        "from torchvision.transforms.v2.functional import resize",
        "from torchvision import datapoints",
        "from torchvision.datapoints import Image",
        "from torchvision.datasets import wrap_dataset_for_transforms_v2",
    ),
)
@pytest.mark.parametrize("call_disable_warning", (True, False))
def test_warnings_v2_namespaces(import_statement, call_disable_warning):
    if call_disable_warning:
        source = f"""
        import warnings
        import torchvision
        torchvision.disable_beta_transforms_warning()
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            {import_statement}
        """
    else:
        source = f"""
        import pytest
        with pytest.warns(UserWarning, match="v2 namespaces are still Beta"):
            {import_statement}
        """
    assert_run_python_script(textwrap.dedent(source))


def test_no_warnings_v1_namespace():
    source = """
    import warnings
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        import torchvision.transforms
        from torchvision import transforms
        import torchvision.transforms.functional
        from torchvision.transforms import Resize
        from torchvision.transforms.functional import resize
        from torchvision import datasets
        from torchvision.datasets import ImageNet
    """
    assert_run_python_script(textwrap.dedent(source))
Philip Meier's avatar
Philip Meier committed
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382


class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)