caltech.py 8.25 KB
Newer Older
1
2
3
4
5
from __future__ import print_function
from PIL import Image
import os
import os.path

6
from .vision import VisionDataset
7
from .utils import download_and_extract_archive, makedir_exist_ok
8
9


10
class Caltech101(VisionDataset):
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    """`Caltech 101 <http://www.vision.caltech.edu/Image_Datasets/Caltech101/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``caltech101`` exists or will be saved to if download is set to True.
        target_type (string or list, optional): Type of target to use, ``category`` or
        ``annotation``. Can also be a list to output a tuple with all specified target types.
        ``category`` represents the target class, and ``annotation`` is a list of points
        from a hand-generated outline. Defaults to ``category``.
        transform (callable, optional): A function/transform that takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

29
30
31
32
33
    def __init__(self, root, target_type="category", transform=None,
                 target_transform=None, download=False):
        super(Caltech101, self).__init__(os.path.join(root, 'caltech101'),
                                         transform=transform,
                                         target_transform=target_transform)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        makedir_exist_ok(self.root)
        if isinstance(target_type, list):
            self.target_type = target_type
        else:
            self.target_type = [target_type]

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        self.categories = sorted(os.listdir(os.path.join(self.root, "101_ObjectCategories")))
        self.categories.remove("BACKGROUND_Google")  # this is not a real class

        # For some reason, the category names in "101_ObjectCategories" and
        # "Annotations" do not always match. This is a manual map between the
        # two. Defaults to using same name, since most names are fine.
        name_map = {"Faces": "Faces_2",
                    "Faces_easy": "Faces_3",
                    "Motorbikes": "Motorbikes_16",
                    "airplanes": "Airplanes_Side_2"}
        self.annotation_categories = list(map(lambda x: name_map[x] if x in name_map else x, self.categories))

        self.index = []
        self.y = []
        for (i, c) in enumerate(self.categories):
            n = len(os.listdir(os.path.join(self.root, "101_ObjectCategories", c)))
            self.index.extend(range(1, n + 1))
            self.y.extend(n * [i])

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where the type of target specified by target_type.
        """
        import scipy.io

        img = Image.open(os.path.join(self.root,
                                      "101_ObjectCategories",
                                      self.categories[self.y[index]],
                                      "image_{:04d}.jpg".format(self.index[index])))

        target = []
        for t in self.target_type:
            if t == "category":
                target.append(self.y[index])
            elif t == "annotation":
                data = scipy.io.loadmat(os.path.join(self.root,
                                                     "Annotations",
                                                     self.annotation_categories[self.y[index]],
                                                     "annotation_{:04d}.mat".format(self.index[index])))
                target.append(data["obj_contour"])
            else:
                raise ValueError("Target type \"{}\" is not recognized.".format(t))
        target = tuple(target) if len(target) > 1 else target[0]

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def _check_integrity(self):
        # can be more robust and check hash of files
        return os.path.exists(os.path.join(self.root, "101_ObjectCategories"))

    def __len__(self):
        return len(self.index)

    def download(self):
        if self._check_integrity():
            print('Files already downloaded and verified')
            return

115
        download_and_extract_archive(
116
117
            "http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz",
            self.root,
118
119
            filename="101_ObjectCategories.tar.gz",
            md5="b224c7392d521a49829488ab0f1120d9")
120
        download_and_extract_archive(
121
122
            "http://www.vision.caltech.edu/Image_Datasets/Caltech101/Annotations.tar",
            self.root,
123
124
            filename="101_Annotations.tar",
            md5="6f83eeb1f24d99cab4eb377263132c91")
125

126
127
    def extra_repr(self):
        return "Target type: {target_type}".format(**self.__dict__)
128
129


130
class Caltech256(VisionDataset):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    """`Caltech 256 <http://www.vision.caltech.edu/Image_Datasets/Caltech256/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``caltech256`` exists or will be saved to if download is set to True.
        transform (callable, optional): A function/transform that takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

145
146
147
148
    def __init__(self, root, transform=None, target_transform=None, download=False):
        super(Caltech256, self).__init__(os.path.join(root, 'caltech256'),
                                         transform=transform,
                                         target_transform=target_transform)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        makedir_exist_ok(self.root)

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        self.categories = sorted(os.listdir(os.path.join(self.root, "256_ObjectCategories")))
        self.index = []
        self.y = []
        for (i, c) in enumerate(self.categories):
            n = len(os.listdir(os.path.join(self.root, "256_ObjectCategories", c)))
            self.index.extend(range(1, n + 1))
            self.y.extend(n * [i])

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        img = Image.open(os.path.join(self.root,
                                      "256_ObjectCategories",
                                      self.categories[self.y[index]],
                                      "{:03d}_{:04d}.jpg".format(self.y[index] + 1, self.index[index])))

        target = self.y[index]

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def _check_integrity(self):
        # can be more robust and check hash of files
        return os.path.exists(os.path.join(self.root, "256_ObjectCategories"))

    def __len__(self):
        return len(self.index)

    def download(self):
        if self._check_integrity():
            print('Files already downloaded and verified')
            return

201
        download_and_extract_archive(
202
203
            "http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar",
            self.root,
204
205
            filename="256_ObjectCategories.tar",
            md5="67b4f42ca05d46448c6bb8ecd2220f6d")