caltech.py 8.63 KB
Newer Older
1
2
3
4
5
from __future__ import print_function
from PIL import Image
import os
import os.path

6
7
from .vision import VisionDataset
from .utils import download_url, makedir_exist_ok
8
9


10
class Caltech101(VisionDataset):
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    """`Caltech 101 <http://www.vision.caltech.edu/Image_Datasets/Caltech101/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``caltech101`` exists or will be saved to if download is set to True.
        target_type (string or list, optional): Type of target to use, ``category`` or
        ``annotation``. Can also be a list to output a tuple with all specified target types.
        ``category`` represents the target class, and ``annotation`` is a list of points
        from a hand-generated outline. Defaults to ``category``.
        transform (callable, optional): A function/transform that takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    def __init__(self, root, target_type="category",
                 transform=None, target_transform=None,
                 download=False):
32
        super(Caltech101, self).__init__(os.path.join(root, 'caltech101'))
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        makedir_exist_ok(self.root)
        if isinstance(target_type, list):
            self.target_type = target_type
        else:
            self.target_type = [target_type]
        self.transform = transform
        self.target_transform = target_transform

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        self.categories = sorted(os.listdir(os.path.join(self.root, "101_ObjectCategories")))
        self.categories.remove("BACKGROUND_Google")  # this is not a real class

        # For some reason, the category names in "101_ObjectCategories" and
        # "Annotations" do not always match. This is a manual map between the
        # two. Defaults to using same name, since most names are fine.
        name_map = {"Faces": "Faces_2",
                    "Faces_easy": "Faces_3",
                    "Motorbikes": "Motorbikes_16",
                    "airplanes": "Airplanes_Side_2"}
        self.annotation_categories = list(map(lambda x: name_map[x] if x in name_map else x, self.categories))

        self.index = []
        self.y = []
        for (i, c) in enumerate(self.categories):
            n = len(os.listdir(os.path.join(self.root, "101_ObjectCategories", c)))
            self.index.extend(range(1, n + 1))
            self.y.extend(n * [i])

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where the type of target specified by target_type.
        """
        import scipy.io

        img = Image.open(os.path.join(self.root,
                                      "101_ObjectCategories",
                                      self.categories[self.y[index]],
                                      "image_{:04d}.jpg".format(self.index[index])))

        target = []
        for t in self.target_type:
            if t == "category":
                target.append(self.y[index])
            elif t == "annotation":
                data = scipy.io.loadmat(os.path.join(self.root,
                                                     "Annotations",
                                                     self.annotation_categories[self.y[index]],
                                                     "annotation_{:04d}.mat".format(self.index[index])))
                target.append(data["obj_contour"])
            else:
                raise ValueError("Target type \"{}\" is not recognized.".format(t))
        target = tuple(target) if len(target) > 1 else target[0]

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def _check_integrity(self):
        # can be more robust and check hash of files
        return os.path.exists(os.path.join(self.root, "101_ObjectCategories"))

    def __len__(self):
        return len(self.index)

    def download(self):
        import tarfile

        if self._check_integrity():
            print('Files already downloaded and verified')
            return

        download_url("http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz",
                     self.root,
                     "101_ObjectCategories.tar.gz",
                     "b224c7392d521a49829488ab0f1120d9")
        download_url("http://www.vision.caltech.edu/Image_Datasets/Caltech101/Annotations.tar",
                     self.root,
                     "101_Annotations.tar",
                     "6f83eeb1f24d99cab4eb377263132c91")

        # extract file
        with tarfile.open(os.path.join(self.root, "101_ObjectCategories.tar.gz"), "r:gz") as tar:
            tar.extractall(path=self.root)

        with tarfile.open(os.path.join(self.root, "101_Annotations.tar"), "r:") as tar:
            tar.extractall(path=self.root)

134
135
    def extra_repr(self):
        return "Target type: {target_type}".format(**self.__dict__)
136
137


138
class Caltech256(VisionDataset):
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    """`Caltech 256 <http://www.vision.caltech.edu/Image_Datasets/Caltech256/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``caltech256`` exists or will be saved to if download is set to True.
        transform (callable, optional): A function/transform that takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
    """

    def __init__(self, root,
                 transform=None, target_transform=None,
                 download=False):
156
        super(Caltech256, self).__init__(os.path.join(root, 'caltech256'))
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        makedir_exist_ok(self.root)
        self.transform = transform
        self.target_transform = target_transform

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        self.categories = sorted(os.listdir(os.path.join(self.root, "256_ObjectCategories")))
        self.index = []
        self.y = []
        for (i, c) in enumerate(self.categories):
            n = len(os.listdir(os.path.join(self.root, "256_ObjectCategories", c)))
            self.index.extend(range(1, n + 1))
            self.y.extend(n * [i])

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        img = Image.open(os.path.join(self.root,
                                      "256_ObjectCategories",
                                      self.categories[self.y[index]],
                                      "{:03d}_{:04d}.jpg".format(self.y[index] + 1, self.index[index])))

        target = self.y[index]

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def _check_integrity(self):
        # can be more robust and check hash of files
        return os.path.exists(os.path.join(self.root, "256_ObjectCategories"))

    def __len__(self):
        return len(self.index)

    def download(self):
        import tarfile

        if self._check_integrity():
            print('Files already downloaded and verified')
            return

        download_url("http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar",
                     self.root,
                     "256_ObjectCategories.tar",
                     "67b4f42ca05d46448c6bb8ecd2220f6d")

        # extract file
        with tarfile.open(os.path.join(self.root, "256_ObjectCategories.tar"), "r:") as tar:
            tar.extractall(path=self.root)