resnet.py 6.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152']


model_urls = {
    'resnet18': 'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth',
    'resnet34': 'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth',
Sam Gross's avatar
Sam Gross committed
14
    'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth',
15
    'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth',
16
17
18
19
20
21
22
23
24
}


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
25
class BasicBlock(nn.Module):
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
57
class Bottleneck(nn.Module):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
96
class ResNet(nn.Module):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


155
def resnet18(pretrained=False, **kwargs):
156
157
158
159
160
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
161
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
162
163
164
165
166
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


167
def resnet34(pretrained=False, **kwargs):
168
169
170
171
172
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
173
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
174
175
176
177
178
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


179
def resnet50(pretrained=False, **kwargs):
180
181
182
183
184
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
185
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
186
187
188
189
190
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


191
def resnet101(pretrained=False, **kwargs):
192
193
194
195
196
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
197
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
Sam Gross's avatar
Sam Gross committed
198
199
200
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model
201
202


203
def resnet152(pretrained=False, **kwargs):
204
205
206
207
208
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
209
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
210
211
212
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model