ROIPool_cuda.cu 7.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>

#include "cuda_helpers.h"

template <typename T>
__global__ void RoIPoolForward(
    const int nthreads,
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const T* rois,
    T* output,
    int* argmax_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = round(offset_rois[1] * spatial_scale);
    int roi_start_h = round(offset_rois[2] * spatial_scale);
    int roi_end_w = round(offset_rois[3] * spatial_scale);
    int roi_end_h = round(offset_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    // Define an empty pooling region to be zero
    T maxval = is_empty ? 0 : -FLT_MAX;
    // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
    int maxidx = -1;
    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_index = h * width + w;
        if (offset_input[input_index] > maxval) {
          maxval = offset_input[input_index];
          maxidx = input_index;
        }
      }
    }
    output[index] = maxval;
    argmax_data[index] = maxidx;
  }
}

template <typename T>
__global__ void RoIPoolBackward(
    const int nthreads,
    const T* grad_output,
    const int* argmax_data,
    const int num_rois,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    T* grad_input,
    const T* rois,
    const int n_stride,
    const int c_stride,
    const int h_stride,
    const int w_stride) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    T* grad_input_offset =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    int output_offset = n * n_stride + c * c_stride;
    const int* argmax_data_offset =
        argmax_data + (n * channels + c) * pooled_height * pooled_width;
    int argmax = argmax_data_offset[ph * pooled_width + pw];

    if (argmax != -1) {
      atomicAdd(
          grad_input_offset + argmax,
          static_cast<T>(
              grad_output[output_offset + ph * h_stride + pw * w_stride]));
    }
  }
}

std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(
    const at::Tensor& input,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width) {
  AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIPool_forward_cuda";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());
  at::Tensor argmax = at::zeros(
      {num_rois, channels, pooled_height, pooled_width},
      input.options().dtype(at::kInt));

  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
149
150
151
152
  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
153
154
155
156
157
158
159
160
161
162
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, argmax);
  }

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "ROIPool_forward", [&] {
    RoIPoolForward<scalar_t><<<grid, block, 0, stream>>>(
        output_size,
163
        input.contiguous().data_ptr<scalar_t>(),
164
165
166
167
168
169
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
170
171
172
        rois.contiguous().data_ptr<scalar_t>(),
        output.data_ptr<scalar_t>(),
        argmax.data_ptr<int>());
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return std::make_tuple(output, argmax);
}

at::Tensor ROIPool_backward_cuda(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int batch_size,
    const int channels,
    const int height,
    const int width) {
  // Check if input tensors are CUDA tensors
  AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor");
  AT_ASSERTM(argmax.device().is_cuda(), "argmax must be a CUDA tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      argmax_t{argmax, "argmax", 3};

  at::CheckedFrom c = "ROIPool_backward_cuda";
  at::checkAllSameGPU(c, {grad_t, rois_t, argmax_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
210
211
212
213
  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.type(), "ROIPool_backward", [&] {
    RoIPoolBackward<scalar_t><<<grid, block, 0, stream>>>(
        grad.numel(),
230
231
        grad.data_ptr<scalar_t>(),
        argmax.contiguous().data_ptr<int>(),
232
233
234
235
236
237
238
        num_rois,
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
239
240
        grad_input.data_ptr<scalar_t>(),
        rois.contiguous().data_ptr<scalar_t>(),
241
242
243
244
245
246
247
248
        n_stride,
        c_stride,
        h_stride,
        w_stride);
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}