#include #include #include #include #include #include "cuda_helpers.h" template __global__ void RoIPoolForward( const int nthreads, const T* input, const T spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const T* rois, T* output, int* argmax_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const T* offset_rois = rois + n * 5; int roi_batch_ind = offset_rois[0]; int roi_start_w = round(offset_rois[1] * spatial_scale); int roi_start_h = round(offset_rois[2] * spatial_scale); int roi_end_w = round(offset_rois[3] * spatial_scale); int roi_end_h = round(offset_rois[4] * spatial_scale); // Force malformed ROIs to be 1x1 int roi_width = max(roi_end_w - roi_start_w + 1, 1); int roi_height = max(roi_end_h - roi_start_h + 1, 1); T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); int hstart = static_cast(floor(static_cast(ph) * bin_size_h)); int wstart = static_cast(floor(static_cast(pw) * bin_size_w)); int hend = static_cast(ceil(static_cast(ph + 1) * bin_size_h)); int wend = static_cast(ceil(static_cast(pw + 1) * bin_size_w)); // Add roi offsets and clip to input boundaries hstart = min(max(hstart + roi_start_h, 0), height); hend = min(max(hend + roi_start_h, 0), height); wstart = min(max(wstart + roi_start_w, 0), width); wend = min(max(wend + roi_start_w, 0), width); bool is_empty = (hend <= hstart) || (wend <= wstart); // Define an empty pooling region to be zero T maxval = is_empty ? 0 : -FLT_MAX; // If nothing is pooled, argmax = -1 causes nothing to be backprop'd int maxidx = -1; const T* offset_input = input + (roi_batch_ind * channels + c) * height * width; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { int input_index = h * width + w; if (offset_input[input_index] > maxval) { maxval = offset_input[input_index]; maxidx = input_index; } } } output[index] = maxval; argmax_data[index] = maxidx; } } template __global__ void RoIPoolBackward( const int nthreads, const T* grad_output, const int* argmax_data, const int num_rois, const T spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, T* grad_input, const T* rois, const int n_stride, const int c_stride, const int h_stride, const int w_stride) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const T* offset_rois = rois + n * 5; int roi_batch_ind = offset_rois[0]; T* grad_input_offset = grad_input + ((roi_batch_ind * channels + c) * height * width); int output_offset = n * n_stride + c * c_stride; const int* argmax_data_offset = argmax_data + (n * channels + c) * pooled_height * pooled_width; int argmax = argmax_data_offset[ph * pooled_width + pw]; if (argmax != -1) { atomicAdd( grad_input_offset + argmax, static_cast( grad_output[output_offset + ph * h_stride + pw * w_stride])); } } } std::tuple ROIPool_forward_cuda( const at::Tensor& input, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int pooled_width) { AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; at::CheckedFrom c = "ROIPool_forward_cuda"; at::checkAllSameGPU(c, {input_t, rois_t}); at::checkAllSameType(c, {input_t, rois_t}); at::cuda::CUDAGuard device_guard(input.device()); auto num_rois = rois.size(0); auto channels = input.size(1); auto height = input.size(2); auto width = input.size(3); at::Tensor output = at::zeros( {num_rois, channels, pooled_height, pooled_width}, input.options()); at::Tensor argmax = at::zeros( {num_rois, channels, pooled_height, pooled_width}, input.options().dtype(at::kInt)); auto output_size = num_rois * pooled_height * pooled_width * channels; cudaStream_t stream = at::cuda::getCurrentCUDAStream(); dim3 grid(std::min( at::cuda::ATenCeilDiv( static_cast(output_size), static_cast(512)), static_cast(4096))); dim3 block(512); if (output.numel() == 0) { AT_CUDA_CHECK(cudaGetLastError()); return std::make_tuple(output, argmax); } AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.type(), "ROIPool_forward", [&] { RoIPoolForward<<>>( output_size, input.contiguous().data_ptr(), spatial_scale, channels, height, width, pooled_height, pooled_width, rois.contiguous().data_ptr(), output.data_ptr(), argmax.data_ptr()); }); AT_CUDA_CHECK(cudaGetLastError()); return std::make_tuple(output, argmax); } at::Tensor ROIPool_backward_cuda( const at::Tensor& grad, const at::Tensor& rois, const at::Tensor& argmax, const float spatial_scale, const int pooled_height, const int pooled_width, const int batch_size, const int channels, const int height, const int width) { // Check if input tensors are CUDA tensors AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); AT_ASSERTM(argmax.device().is_cuda(), "argmax must be a CUDA tensor"); at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}, argmax_t{argmax, "argmax", 3}; at::CheckedFrom c = "ROIPool_backward_cuda"; at::checkAllSameGPU(c, {grad_t, rois_t, argmax_t}); at::checkAllSameType(c, {grad_t, rois_t}); at::cuda::CUDAGuard device_guard(grad.device()); auto num_rois = rois.size(0); at::Tensor grad_input = at::zeros({batch_size, channels, height, width}, grad.options()); cudaStream_t stream = at::cuda::getCurrentCUDAStream(); dim3 grid(std::min( at::cuda::ATenCeilDiv( static_cast(grad.numel()), static_cast(512)), static_cast(4096))); dim3 block(512); // handle possibly empty gradients if (grad.numel() == 0) { AT_CUDA_CHECK(cudaGetLastError()); return grad_input; } int n_stride = grad.stride(0); int c_stride = grad.stride(1); int h_stride = grad.stride(2); int w_stride = grad.stride(3); AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.type(), "ROIPool_backward", [&] { RoIPoolBackward<<>>( grad.numel(), grad.data_ptr(), argmax.contiguous().data_ptr(), num_rois, spatial_scale, channels, height, width, pooled_height, pooled_width, grad_input.data_ptr(), rois.contiguous().data_ptr(), n_stride, c_stride, h_stride, w_stride); }); AT_CUDA_CHECK(cudaGetLastError()); return grad_input; }