ssdlite.py 10.1 KB
Newer Older
1
import torch
2
import warnings
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

from collections import OrderedDict
from functools import partial
from torch import nn, Tensor
from typing import Any, Callable, Dict, List, Optional, Tuple

from . import _utils as det_utils
from .ssd import SSD, SSDScoringHead
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .. import mobilenet
from ..mobilenetv3 import ConvBNActivation
from ..utils import load_state_dict_from_url


__all__ = ['ssdlite320_mobilenet_v3_large']

model_urls = {
    'ssdlite320_mobilenet_v3_large_coco':
        'https://download.pytorch.org/models/ssdlite320_mobilenet_v3_large_coco-a79551df.pth'
}


26
# Building blocks of SSDlite as described in section 6.2 of MobileNetV2 paper
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def _prediction_block(in_channels: int, out_channels: int, kernel_size: int,
                      norm_layer: Callable[..., nn.Module]) -> nn.Sequential:
    return nn.Sequential(
        # 3x3 depthwise with stride 1 and padding 1
        ConvBNActivation(in_channels, in_channels, kernel_size=kernel_size, groups=in_channels,
                         norm_layer=norm_layer, activation_layer=nn.ReLU6),

        # 1x1 projetion to output channels
        nn.Conv2d(in_channels, out_channels, 1)
    )


def _extra_block(in_channels: int, out_channels: int, norm_layer: Callable[..., nn.Module]) -> nn.Sequential:
    activation = nn.ReLU6
    intermediate_channels = out_channels // 2
    return nn.Sequential(
        # 1x1 projection to half output channels
        ConvBNActivation(in_channels, intermediate_channels, kernel_size=1,
                         norm_layer=norm_layer, activation_layer=activation),

        # 3x3 depthwise with stride 2 and padding 1
        ConvBNActivation(intermediate_channels, intermediate_channels, kernel_size=3, stride=2,
                         groups=intermediate_channels, norm_layer=norm_layer, activation_layer=activation),

        # 1x1 projetion to output channels
        ConvBNActivation(intermediate_channels, out_channels, kernel_size=1,
                         norm_layer=norm_layer, activation_layer=activation),
    )


def _normal_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.normal_(layer.weight, mean=0.0, std=0.03)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDLiteHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int,
                 norm_layer: Callable[..., nn.Module]):
        super().__init__()
        self.classification_head = SSDLiteClassificationHead(in_channels, num_anchors, num_classes, norm_layer)
        self.regression_head = SSDLiteRegressionHead(in_channels, num_anchors, norm_layer)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
            'bbox_regression': self.regression_head(x),
            'cls_logits': self.classification_head(x),
        }


class SSDLiteClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int,
                 norm_layer: Callable[..., nn.Module]):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(_prediction_block(channels, num_classes * anchors, 3, norm_layer))
        _normal_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDLiteRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], norm_layer: Callable[..., nn.Module]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(_prediction_block(channels, 4 * anchors, 3, norm_layer))
        _normal_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSDLiteFeatureExtractorMobileNet(nn.Module):
99
100
    def __init__(self, backbone: nn.Module, c4_pos: int, norm_layer: Callable[..., nn.Module], width_mult: float = 1.0,
                 min_depth: int = 16, **kwargs: Any):
101
102
103
104
        super().__init__()

        assert not backbone[c4_pos].use_res_connect
        self.features = nn.Sequential(
105
            # As described in section 6.3 of MobileNetV3 paper
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            nn.Sequential(*backbone[:c4_pos], backbone[c4_pos].block[0]),  # from start until C4 expansion layer
            nn.Sequential(backbone[c4_pos].block[1:], *backbone[c4_pos + 1:]),  # from C4 depthwise until end
        )

        get_depth = lambda d: max(min_depth, int(d * width_mult))  # noqa: E731
        extra = nn.ModuleList([
            _extra_block(backbone[-1].out_channels, get_depth(512), norm_layer),
            _extra_block(get_depth(512), get_depth(256), norm_layer),
            _extra_block(get_depth(256), get_depth(256), norm_layer),
            _extra_block(get_depth(256), get_depth(128), norm_layer),
        ])
        _normal_init(extra)

        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # Get feature maps from backbone and extra. Can't be refactored due to JIT limitations.
        output = []
        for block in self.features:
            x = block(x)
            output.append(x)

        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


def _mobilenet_extractor(backbone_name: str, progress: bool, pretrained: bool, trainable_layers: int,
136
                         norm_layer: Callable[..., nn.Module], **kwargs: Any):
137
138
139
140
141
142
143
144
145
146
147
148
149
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, progress=progress,
                                                 norm_layer=norm_layer, **kwargs).features
    if not pretrained:
        # Change the default initialization scheme if not pretrained
        _normal_init(backbone)

    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
150
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
151
152
153
154
155

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

156
    return SSDLiteFeatureExtractorMobileNet(backbone, stage_indices[-2], norm_layer, **kwargs)
157
158
159
160
161
162


def ssdlite320_mobilenet_v3_large(pretrained: bool = False, progress: bool = True, num_classes: int = 91,
                                  pretrained_backbone: bool = False, trainable_backbone_layers: Optional[int] = None,
                                  norm_layer: Optional[Callable[..., nn.Module]] = None,
                                  **kwargs: Any):
163
164
165
166
167
    """Constructs an SSDlite model with input size 320x320 and a MobileNetV3 Large backbone, as described at
    `"Searching for MobileNetV3"
    <https://arxiv.org/abs/1905.02244>`_ and
    `"MobileNetV2: Inverted Residuals and Linear Bottlenecks"
    <https://arxiv.org/abs/1801.04381>`_.
168
169

    See :func:`~torchvision.models.detection.ssd300_vgg16` for more details.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    Example:

        >>> model = torchvision.models.detection.ssdlite320_mobilenet_v3_large(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 320, 320), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
        norm_layer (callable, optional): Module specifying the normalization layer to use.
    """
187
188
189
    if "size" in kwargs:
        warnings.warn("The size of the model is already fixed; ignoring the argument.")

190
191
192
193
194
195
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 6, 6)

    if pretrained:
        pretrained_backbone = False

196
    # Enable reduced tail if no pretrained backbone is selected. See Table 6 of MobileNetV3 paper.
197
    reduce_tail = not pretrained_backbone
198
199
200
201
202

    if norm_layer is None:
        norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.03)

    backbone = _mobilenet_extractor("mobilenet_v3_large", progress, pretrained_backbone, trainable_backbone_layers,
203
                                    norm_layer, reduced_tail=reduce_tail, **kwargs)
204
205
206
207
208
209
210
211
212
213
214
215

    size = (320, 320)
    anchor_generator = DefaultBoxGenerator([[2, 3] for _ in range(6)], min_ratio=0.2, max_ratio=0.95)
    out_channels = det_utils.retrieve_out_channels(backbone, size)
    num_anchors = anchor_generator.num_anchors_per_location()
    assert len(out_channels) == len(anchor_generator.aspect_ratios)

    defaults = {
        "score_thresh": 0.001,
        "nms_thresh": 0.55,
        "detections_per_img": 300,
        "topk_candidates": 300,
216
217
218
219
        # Rescale the input in a way compatible to the backbone:
        # The following mean/std rescale the data from [0, 1] to [-1, -1]
        "image_mean": [0.5, 0.5, 0.5],
        "image_std": [0.5, 0.5, 0.5],
220
221
222
223
224
225
226
227
228
229
230
231
    }
    kwargs = {**defaults, **kwargs}
    model = SSD(backbone, anchor_generator, size, num_classes,
                head=SSDLiteHead(out_channels, num_anchors, num_classes, norm_layer), **kwargs)

    if pretrained:
        weights_name = 'ssdlite320_mobilenet_v3_large_coco'
        if model_urls.get(weights_name, None) is None:
            raise ValueError("No checkpoint is available for model {}".format(weights_name))
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model