ssdlite.py 9.75 KB
Newer Older
1
import torch
2
import warnings
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

from collections import OrderedDict
from functools import partial
from torch import nn, Tensor
from typing import Any, Callable, Dict, List, Optional, Tuple

from . import _utils as det_utils
from .ssd import SSD, SSDScoringHead
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .. import mobilenet
from ..mobilenetv3 import ConvBNActivation
from ..utils import load_state_dict_from_url


__all__ = ['ssdlite320_mobilenet_v3_large']

model_urls = {
    'ssdlite320_mobilenet_v3_large_coco':
        'https://download.pytorch.org/models/ssdlite320_mobilenet_v3_large_coco-a79551df.pth'
}


def _prediction_block(in_channels: int, out_channels: int, kernel_size: int,
                      norm_layer: Callable[..., nn.Module]) -> nn.Sequential:
    return nn.Sequential(
        # 3x3 depthwise with stride 1 and padding 1
        ConvBNActivation(in_channels, in_channels, kernel_size=kernel_size, groups=in_channels,
                         norm_layer=norm_layer, activation_layer=nn.ReLU6),

        # 1x1 projetion to output channels
        nn.Conv2d(in_channels, out_channels, 1)
    )


def _extra_block(in_channels: int, out_channels: int, norm_layer: Callable[..., nn.Module]) -> nn.Sequential:
    activation = nn.ReLU6
    intermediate_channels = out_channels // 2
    return nn.Sequential(
        # 1x1 projection to half output channels
        ConvBNActivation(in_channels, intermediate_channels, kernel_size=1,
                         norm_layer=norm_layer, activation_layer=activation),

        # 3x3 depthwise with stride 2 and padding 1
        ConvBNActivation(intermediate_channels, intermediate_channels, kernel_size=3, stride=2,
                         groups=intermediate_channels, norm_layer=norm_layer, activation_layer=activation),

        # 1x1 projetion to output channels
        ConvBNActivation(intermediate_channels, out_channels, kernel_size=1,
                         norm_layer=norm_layer, activation_layer=activation),
    )


def _normal_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.normal_(layer.weight, mean=0.0, std=0.03)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDLiteHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int,
                 norm_layer: Callable[..., nn.Module]):
        super().__init__()
        self.classification_head = SSDLiteClassificationHead(in_channels, num_anchors, num_classes, norm_layer)
        self.regression_head = SSDLiteRegressionHead(in_channels, num_anchors, norm_layer)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
            'bbox_regression': self.regression_head(x),
            'cls_logits': self.classification_head(x),
        }


class SSDLiteClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int,
                 norm_layer: Callable[..., nn.Module]):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(_prediction_block(channels, num_classes * anchors, 3, norm_layer))
        _normal_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDLiteRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], norm_layer: Callable[..., nn.Module]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(_prediction_block(channels, 4 * anchors, 3, norm_layer))
        _normal_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSDLiteFeatureExtractorMobileNet(nn.Module):
98
99
    def __init__(self, backbone: nn.Module, c4_pos: int, norm_layer: Callable[..., nn.Module], width_mult: float = 1.0,
                 min_depth: int = 16, **kwargs: Any):
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        super().__init__()

        assert not backbone[c4_pos].use_res_connect
        self.features = nn.Sequential(
            nn.Sequential(*backbone[:c4_pos], backbone[c4_pos].block[0]),  # from start until C4 expansion layer
            nn.Sequential(backbone[c4_pos].block[1:], *backbone[c4_pos + 1:]),  # from C4 depthwise until end
        )

        get_depth = lambda d: max(min_depth, int(d * width_mult))  # noqa: E731
        extra = nn.ModuleList([
            _extra_block(backbone[-1].out_channels, get_depth(512), norm_layer),
            _extra_block(get_depth(512), get_depth(256), norm_layer),
            _extra_block(get_depth(256), get_depth(256), norm_layer),
            _extra_block(get_depth(256), get_depth(128), norm_layer),
        ])
        _normal_init(extra)

        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # Get feature maps from backbone and extra. Can't be refactored due to JIT limitations.
        output = []
        for block in self.features:
            x = block(x)
            output.append(x)

        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


def _mobilenet_extractor(backbone_name: str, progress: bool, pretrained: bool, trainable_layers: int,
134
                         norm_layer: Callable[..., nn.Module], **kwargs: Any):
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, progress=progress,
                                                 norm_layer=norm_layer, **kwargs).features
    if not pretrained:
        # Change the default initialization scheme if not pretrained
        _normal_init(backbone)

    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
    freeze_before = num_stages if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

154
    return SSDLiteFeatureExtractorMobileNet(backbone, stage_indices[-2], norm_layer, **kwargs)
155
156
157
158
159
160
161


def ssdlite320_mobilenet_v3_large(pretrained: bool = False, progress: bool = True, num_classes: int = 91,
                                  pretrained_backbone: bool = False, trainable_backbone_layers: Optional[int] = None,
                                  norm_layer: Optional[Callable[..., nn.Module]] = None,
                                  **kwargs: Any):
    """
162
    Constructs an SSDlite model with input size 320x320 and a MobileNetV3 Large backbone. See `SSD` for more details.
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    Example:

        >>> model = torchvision.models.detection.ssdlite320_mobilenet_v3_large(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 320, 320), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        norm_layer:
        **kwargs:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable.
        norm_layer (callable, optional): Module specifying the normalization layer to use.
    """
182
183
184
    if "size" in kwargs:
        warnings.warn("The size of the model is already fixed; ignoring the argument.")

185
186
187
188
189
190
    trainable_backbone_layers = _validate_trainable_layers(
        pretrained or pretrained_backbone, trainable_backbone_layers, 6, 6)

    if pretrained:
        pretrained_backbone = False

191
192
    # Enable reduced tail if no pretrained backbone is selected
    reduce_tail = not pretrained_backbone
193
194
195
196
197

    if norm_layer is None:
        norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.03)

    backbone = _mobilenet_extractor("mobilenet_v3_large", progress, pretrained_backbone, trainable_backbone_layers,
198
                                    norm_layer, reduced_tail=reduce_tail, **kwargs)
199
200
201
202
203
204
205
206
207
208
209
210

    size = (320, 320)
    anchor_generator = DefaultBoxGenerator([[2, 3] for _ in range(6)], min_ratio=0.2, max_ratio=0.95)
    out_channels = det_utils.retrieve_out_channels(backbone, size)
    num_anchors = anchor_generator.num_anchors_per_location()
    assert len(out_channels) == len(anchor_generator.aspect_ratios)

    defaults = {
        "score_thresh": 0.001,
        "nms_thresh": 0.55,
        "detections_per_img": 300,
        "topk_candidates": 300,
211
212
213
214
        # Rescale the input in a way compatible to the backbone:
        # The following mean/std rescale the data from [0, 1] to [-1, -1]
        "image_mean": [0.5, 0.5, 0.5],
        "image_std": [0.5, 0.5, 0.5],
215
216
217
218
219
220
221
222
223
224
225
226
    }
    kwargs = {**defaults, **kwargs}
    model = SSD(backbone, anchor_generator, size, num_classes,
                head=SSDLiteHead(out_channels, num_anchors, num_classes, norm_layer), **kwargs)

    if pretrained:
        weights_name = 'ssdlite320_mobilenet_v3_large_coco'
        if model_urls.get(weights_name, None) is None:
            raise ValueError("No checkpoint is available for model {}".format(weights_name))
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model