functional.py 37.1 KB
Newer Older
1
import torch
2
from torch import Tensor
3
import math
4
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION
5
6
7
8
9
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
10
from numpy import sin, cos, tan
11
import numbers
12
from collections.abc import Sequence, Iterable
13
14
import warnings

15
16
17
from . import functional_pil as F_pil
from . import functional_tensor as F_t

18
19
20
21
22
23
24
25

def _is_pil_image(img):
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


26
27
28
29
def _is_numpy(img):
    return isinstance(img, np.ndarray)


30
def _is_numpy_image(img):
31
    return img.ndim in {2, 3}
32
33
34
35
36
37
38
39
40
41
42
43
44


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
45
    if not(_is_pil_image(pic) or _is_numpy(pic)):
46
47
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

48
49
50
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

51
52
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
53
54
55
        if pic.ndim == 2:
            pic = pic[:, :, None]

56
57
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
58
59
60
61
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
62
63
64
65
66
67
68
69
70
71
72

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
73
74
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
75
76
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
77
78
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
79
80

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
81
    # put it from HWC to CHW format
82
    img = img.permute((2, 0, 1)).contiguous()
83
84
85
86
87
88
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.

    See ``AsTensor`` for more details.

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
    if not(_is_pil_image(pic)):
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
        (torch.Tensor): Converted image

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
    if image.dtype == dtype:
        return image

    if image.dtype.is_floating_point:
        # float to float
        if dtype.is_floating_point:
            return image.to(dtype)

        # float to int
        if (image.dtype == torch.float32 and dtype in (torch.int32, torch.int64)) or (
            image.dtype == torch.float64 and dtype == torch.int64
        ):
            msg = f"The cast from {image.dtype} to {dtype} cannot be performed safely."
            raise RuntimeError(msg)

        eps = 1e-3
        return image.mul(torch.iinfo(dtype).max + 1 - eps).to(dtype)
    else:
        # int to float
        if dtype.is_floating_point:
            max = torch.iinfo(image.dtype).max
            image = image.to(dtype)
            return image / max

        # int to int
        input_max = torch.iinfo(image.dtype).max
        output_max = torch.iinfo(dtype).max

        if input_max > output_max:
            factor = (input_max + 1) // (output_max + 1)
            image = image // factor
            return image.to(dtype)
        else:
            factor = (output_max + 1) // (input_max + 1)
            image = image.to(dtype)
            return image * factor


175
176
177
def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

178
    See :class:`~torchvision.transforms.ToPILImage` for more details.
179
180
181
182
183

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

184
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
185
186
187
188

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
189
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
190
191
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
192
193
194
195
196
197
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
198
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
199
200
201
202
203
204
205
206
207

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

208
    npimg = pic
209
    if isinstance(pic, torch.FloatTensor) and mode != 'F':
210
        pic = pic.mul(255).byte()
Varun Agrawal's avatar
Varun Agrawal committed
211
    if isinstance(pic, torch.Tensor):
212
213
214
215
216
217
218
219
220
221
222
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
223
        elif npimg.dtype == np.int16:
224
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
225
        elif npimg.dtype == np.int32:
226
227
228
229
230
231
232
233
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
234
235
236
237
238
239
240
241
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

242
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
243
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


surgan12's avatar
surgan12 committed
262
def normalize(tensor, mean, std, inplace=False):
263
264
    """Normalize a tensor image with mean and standard deviation.

265
    .. note::
surgan12's avatar
surgan12 committed
266
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
267

268
    See :class:`~torchvision.transforms.Normalize` for more details.
269
270
271
272

    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
273
        std (sequence): Sequence of standard deviations for each channel.
274
        inplace(bool,optional): Bool to make this operation inplace.
275
276
277
278

    Returns:
        Tensor: Normalized Tensor image.
    """
279
280
    if not torch.is_tensor(tensor):
        raise TypeError('tensor should be a torch tensor. Got {}.'.format(type(tensor)))
281

282
283
284
    if tensor.ndimension() != 3:
        raise ValueError('Expected tensor to be a tensor image of size (C, H, W). Got tensor.size() = '
                         '{}.'.format(tensor.size()))
285

surgan12's avatar
surgan12 committed
286
287
288
    if not inplace:
        tensor = tensor.clone()

289
290
291
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
292
293
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
294
295
296
297
298
    if mean.ndim == 1:
        mean = mean[:, None, None]
    if std.ndim == 1:
        std = std[:, None, None]
    tensor.sub_(mean).div_(std)
299
    return tensor
300
301
302


def resize(img, size, interpolation=Image.BILINEAR):
303
    r"""Resize the input PIL Image to the given size.
304
305
306
307
308
309
310

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaing
            the aspect ratio. i.e, if height > width, then image will be rescaled to
311
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
312
313
314
315
316
317
318
319
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
Tongzhou Wang's avatar
Tongzhou Wang committed
320
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


345
def pad(img, padding, fill=0, padding_mode='constant'):
346
    r"""Pad the given PIL Image on all sides with specified padding mode and fill value.
347
348
349
350
351
352
353
354

    Args:
        img (PIL Image): Image to be padded.
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
355
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
356
            length 3, it is used to fill R, G, B channels respectively.
357
358
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
359
360
361
362
363
364
365
366
367
368
369
370
371
372

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
373
374
375
376
377
378
379
380
381
382
383

    Returns:
        PIL Image: Padded image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if not isinstance(padding, (numbers.Number, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError('Got inappropriate fill arg')
384
385
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')
386

Tongzhou Wang's avatar
Tongzhou Wang committed
387
    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
388
389
390
        raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

391
392
393
394
    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if padding_mode == 'constant':
395
396
397
398
399
400
        if isinstance(fill, numbers.Number):
            fill = (fill,) * len(img.getbands())
        if len(fill) != len(img.getbands()):
            raise ValueError('fill should have the same number of elements '
                             'as the number of channels in the image '
                             '({}), got {} instead'.format(len(img.getbands()), len(fill)))
surgan12's avatar
surgan12 committed
401
402
403
404
405
406
        if img.mode == 'P':
            palette = img.getpalette()
            image = ImageOps.expand(img, border=padding, fill=fill)
            image.putpalette(palette)
            return image

407
408
409
410
        return ImageOps.expand(img, border=padding, fill=fill)
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
Tongzhou Wang's avatar
Tongzhou Wang committed
411
        if isinstance(padding, Sequence) and len(padding) == 2:
412
413
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
Tongzhou Wang's avatar
Tongzhou Wang committed
414
        if isinstance(padding, Sequence) and len(padding) == 4:
415
416
417
418
419
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

surgan12's avatar
surgan12 committed
420
421
422
423
424
425
426
427
        if img.mode == 'P':
            palette = img.getpalette()
            img = np.asarray(img)
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

428
429
430
431
432
433
434
435
436
        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
437
438


439
def crop(img, top, left, height, width):
440
    """Crop the given PIL Image.
441

442
    Args:
443
444
445
446
447
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
448

449
450
451
452
453
454
    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

455
    return img.crop((left, top, left + width, top + height))
456
457
458


def center_crop(img, output_size):
459
460
    """Crop the given PIL Image and resize it to desired size.

461
462
463
464
465
466
467
    Args:
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
            it is used for both directions
    Returns:
        PIL Image: Cropped image.
    """
468
469
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
470
471
472
473
474
    image_width, image_height = img.size
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
    return crop(img, crop_top, crop_left, crop_height, crop_width)
475
476


477
def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINEAR):
478
479
    """Crop the given PIL Image and resize it to desired size.

480
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
481
482

    Args:
483
484
485
486
487
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
488
        size (sequence or int): Desired output size. Same semantics as ``resize``.
489
490
491
492
493
494
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    assert _is_pil_image(img), 'img should be PIL Image'
495
    img = crop(img, top, left, height, width)
496
497
498
499
    img = resize(img, size, interpolation)
    return img


500
501
def hflip(img: Tensor) -> Tensor:
    """Horizontally flip the given PIL Image or torch Tensor.
502
503

    Args:
504
505
506
507
        img (PIL Image or Torch Tensor): Image to be flipped. If img
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
508
509

    Returns:
Oscar Mañas's avatar
Oscar Mañas committed
510
        PIL Image:  Horizontally flipped image.
511
    """
512
513
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
514

515
    return F_t.hflip(img)
516
517


518
519
520
521
522
523
524
525
def _parse_fill(fill, img, min_pil_version):
    """Helper function to get the fill color for rotate and perspective transforms.

    Args:
        fill (n-tuple or int or float): Pixel fill value for area outside the transformed
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands.
        img (PIL Image): Image to be filled.
526
        min_pil_version (str): The minimum PILLOW version for when the ``fillcolor`` option
527
528
529
530
531
            was first introduced in the calling function. (e.g. rotate->5.2.0, perspective->5.0.0)

    Returns:
        dict: kwarg for ``fillcolor``
    """
532
533
534
    major_found, minor_found = (int(v) for v in PILLOW_VERSION.split('.')[:2])
    major_required, minor_required = (int(v) for v in min_pil_version.split('.')[:2])
    if major_found < major_required or (major_found == major_required and minor_found < minor_required):
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        if fill is None:
            return {}
        else:
            msg = ("The option to fill background area of the transformed image, "
                   "requires pillow>={}")
            raise RuntimeError(msg.format(min_pil_version))

    num_bands = len(img.getbands())
    if fill is None:
        fill = 0
    if isinstance(fill, (int, float)) and num_bands > 1:
        fill = tuple([fill] * num_bands)
    if not isinstance(fill, (int, float)) and len(fill) != num_bands:
        msg = ("The number of elements in 'fill' does not match the number of "
               "bands of the image ({} != {})")
        raise ValueError(msg.format(len(fill), num_bands))

    return {"fillcolor": fill}


555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def _get_perspective_coeffs(startpoints, endpoints):
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

    In Perspective Transform each pixel (x, y) in the orignal image gets transformed as,
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
        List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image,
        List containing [top-left, top-right, bottom-right, bottom-left] of the transformed
                   image
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
    matrix = []

    for p1, p2 in zip(endpoints, startpoints):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    A = torch.tensor(matrix, dtype=torch.float)
    B = torch.tensor(startpoints, dtype=torch.float).view(8)
576
    res = torch.lstsq(B, A)[0]
577
578
579
    return res.squeeze_(1).tolist()


580
def perspective(img, startpoints, endpoints, interpolation=Image.BICUBIC, fill=None):
581
582
583
584
    """Perform perspective transform of the given PIL Image.

    Args:
        img (PIL Image): Image to be transformed.
585
586
        startpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image
        endpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
587
        interpolation: Default- Image.BICUBIC
588
589
590
591
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            This option is only available for ``pillow>=5.0.0``.

592
593
594
    Returns:
        PIL Image:  Perspectively transformed Image.
    """
595

596
597
598
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

599
600
    opts = _parse_fill(fill, img, '5.0.0')

601
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
602
    return img.transform(img.size, Image.PERSPECTIVE, coeffs, interpolation, **opts)
603
604


605
606
def vflip(img: Tensor) -> Tensor:
    """Vertically flip the given PIL Image or torch Tensor.
607
608

    Args:
609
610
611
612
        img (PIL Image or Torch Tensor): Image to be flipped. If img
            is a Tensor, it is expected to be in [..., H, W] format,
            where ... means it can have an arbitrary number of trailing
            dimensions.
613
614
615
616

    Returns:
        PIL Image:  Vertically flipped image.
    """
617
618
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
619

620
    return F_t.vflip(img)
621
622
623
624
625
626
627
628
629
630
631
632
633


def five_crop(img, size):
    """Crop the given PIL Image into four corners and the central crop.

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.
634

635
    Returns:
636
637
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
638
639
640
641
642
643
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

644
645
646
647
648
649
650
651
652
653
654
655
    image_width, image_height = img.size
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = img.crop((0, 0, crop_width, crop_height))
    tr = img.crop((image_width - crop_width, 0, image_width, crop_height))
    bl = img.crop((0, image_height - crop_height, crop_width, image_height))
    br = img.crop((image_width - crop_width, image_height - crop_height,
                   image_width, image_height))
    center = center_crop(img, (crop_height, crop_width))
656
657
658
659
    return (tl, tr, bl, br, center)


def ten_crop(img, size, vertical_flip=False):
660
661
662
    """Generate ten cropped images from the given PIL Image.
    Crop the given PIL Image into four corners and the central crop plus the
    flipped version of these (horizontal flipping is used by default).
663
664
665
666
667

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

668
    Args:
669
        size (sequence or int): Desired output size of the crop. If size is an
670
671
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
672
        vertical_flip (bool): Use vertical flipping instead of horizontal
673
674

    Returns:
675
676
677
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


695
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
696
697
698
    """Adjust brightness of an Image.

    Args:
699
        img (PIL Image or Torch Tensor): Image to be adjusted.
700
701
702
703
704
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
705
        PIL Image or Torch Tensor: Brightness adjusted image.
706
    """
707
708
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
709

710
    return F_t.adjust_brightness(img, brightness_factor)
711
712


713
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
714
715
716
    """Adjust contrast of an Image.

    Args:
717
        img (PIL Image or Torch Tensor): Image to be adjusted.
718
719
720
721
722
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
723
        PIL Image or Torch Tensor: Contrast adjusted image.
724
    """
725
726
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
727

728
    return F_t.adjust_contrast(img, contrast_factor)
729
730


731
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
732
733
734
    """Adjust color saturation of an image.

    Args:
735
        img (PIL Image or Torch Tensor): Image to be adjusted.
736
737
738
739
740
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
741
        PIL Image or Torch Tensor: Saturation adjusted image.
742
    """
743
744
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
745

746
    return F_t.adjust_saturation(img, saturation_factor)
747
748


749
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
750
751
752
753
754
755
756
757
758
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

759
760
761
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
762
763
764
765
766
767
768
769
770
771
772
773

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
774
775
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
776

777
    raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
778
779
780


def adjust_gamma(img, gamma, gain=1):
781
    r"""Perform gamma correction on an image.
782
783
784
785

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

786
787
788
789
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
790

791
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
792
793
794

    Args:
        img (PIL Image): PIL Image to be adjusted.
795
796
797
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
798
799
800
801
802
803
804
805
806
807
808
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

809
810
    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part
811

812
    img = img.convert(input_mode)
813
    return img
814
815


Philip Meier's avatar
Philip Meier committed
816
def rotate(img, angle, resample=False, expand=False, center=None, fill=None):
817
    """Rotate the image by angle.
818
819
820
821


    Args:
        img (PIL Image): PIL Image to be rotated.
822
823
824
825
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
826
827
828
829
830
831
832
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
833
834
835
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
836

837
    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
838

839
840
841
842
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

843
    opts = _parse_fill(fill, img, '5.2.0')
844

Philip Meier's avatar
Philip Meier committed
845
    return img.rotate(angle, resample, expand, center, **opts)
846
847


848
849
850
851
852
853
854
855
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
856
857
858
859
860
861
862
863
864
865
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
866
867
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

868
    if isinstance(shear, numbers.Number):
ptrblck's avatar
ptrblck committed
869
        shear = [shear, 0]
870
871

    if not isinstance(shear, (tuple, list)) and len(shear) == 2:
ptrblck's avatar
ptrblck committed
872
873
874
        raise ValueError(
            "Shear should be a single value or a tuple/list containing " +
            "two values. Got {}".format(shear))
875
876
877
878
879
880
881
882
883
884
885
886

    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
    a = cos(rot - sy) / cos(sy)
    b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
    c = sin(rot - sy) / cos(sy)
    d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
887
888

    # Inverted rotation matrix with scale and shear
889
890
891
892
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
    M = [d, -b, 0,
         -c, a, 0]
    M = [x / scale for x in M]
893
894

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
895
896
    M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
    M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
897
898

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
899
900
901
    M[2] += cx
    M[5] += cy
    return M
902
903
904
905
906
907
908


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """Apply affine transformation on the image keeping image center invariant

    Args:
        img (PIL Image): PIL Image to be rotated.
909
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
910
911
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
912
913
914
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
        If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
        the second value corresponds to a shear parallel to the y axis.
915
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
916
            An optional resampling filter.
917
918
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
919
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
920
921
922
923
924
925
926
927
928
929
930
931
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
932
    kwargs = {"fillcolor": fillcolor} if int(PILLOW_VERSION.split('.')[0]) >= 5 else {}
933
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
934
935


936
937
938
939
940
941
942
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
943
944
945
946
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img
962
963


964
def erase(img, i, j, h, w, v, inplace=False):
965
966
967
968
969
970
971
972
973
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
974
        inplace(bool, optional): For in-place operations. By default is set False.
975
976
977
978
979
980
981

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

982
983
984
    if not inplace:
        img = img.clone()

985
986
    img[:, i:i + h, j:j + w] = v
    return img