functional.py 30.7 KB
Newer Older
1
2
from __future__ import division
import torch
Tongzhou Wang's avatar
Tongzhou Wang committed
3
import sys
4
import math
5
from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
6
7
8
9
10
11
12
13
14
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import collections
import warnings

Tongzhou Wang's avatar
Tongzhou Wang committed
15
16
17
18
19
20
21
if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

22
23
24
25
26
27
28
29
30
31
32
33

def _is_pil_image(img):
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


def _is_tensor_image(img):
    return torch.is_tensor(img) and img.ndimension() == 3


34
35
36
37
def _is_numpy(img):
    return isinstance(img, np.ndarray)


38
def _is_numpy_image(img):
39
    return img.ndim in {2, 3}
40
41
42
43
44
45
46
47
48
49
50
51
52


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
53
    if not(_is_pil_image(pic) or _is_numpy(pic)):
54
55
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

56
57
58
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

59
60
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
61
62
63
        if pic.ndim == 2:
            pic = pic[:, :, None]

64
65
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
66
67
68
69
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
70
71
72
73
74
75
76
77
78
79
80

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
81
82
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
83
84
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
85
86
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
surgan12's avatar
surgan12 committed
87
    # PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    if pic.mode == 'YCbCr':
        nchannel = 3
    elif pic.mode == 'I;16':
        nchannel = 1
    else:
        nchannel = len(pic.mode)
    img = img.view(pic.size[1], pic.size[0], nchannel)
    # put it from HWC to CHW format
    # yikes, this transpose takes 80% of the loading time/CPU
    img = img.transpose(0, 1).transpose(0, 2).contiguous()
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

107
    See :class:`~torchvision.transforms.ToPILImage` for more details.
108
109
110
111
112

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

113
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
114
115
116
117

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
118
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
119
120
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
121
122
123
124
125
126
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
127
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
128
129
130
131
132
133
134
135
136

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

137
138
139
    npimg = pic
    if isinstance(pic, torch.FloatTensor):
        pic = pic.mul(255).byte()
Varun Agrawal's avatar
Varun Agrawal committed
140
    if isinstance(pic, torch.Tensor):
141
142
143
144
145
146
147
148
149
150
151
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
152
        elif npimg.dtype == np.int16:
153
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
154
        elif npimg.dtype == np.int32:
155
156
157
158
159
160
161
162
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
163
164
165
166
167
168
169
170
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

171
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
172
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


surgan12's avatar
surgan12 committed
191
def normalize(tensor, mean, std, inplace=False):
192
193
    """Normalize a tensor image with mean and standard deviation.

194
    .. note::
surgan12's avatar
surgan12 committed
195
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
196

197
    See :class:`~torchvision.transforms.Normalize` for more details.
198
199
200
201

    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
202
        std (sequence): Sequence of standard deviations for each channel.
203
        inplace(bool,optional): Bool to make this operation inplace.
204
205
206
207
208
209

    Returns:
        Tensor: Normalized Tensor image.
    """
    if not _is_tensor_image(tensor):
        raise TypeError('tensor is not a torch image.')
210

surgan12's avatar
surgan12 committed
211
212
213
    if not inplace:
        tensor = tensor.clone()

214
215
216
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
surgan12's avatar
surgan12 committed
217
    tensor.sub_(mean[:, None, None]).div_(std[:, None, None])
218
    return tensor
219
220
221


def resize(img, size, interpolation=Image.BILINEAR):
222
    r"""Resize the input PIL Image to the given size.
223
224
225
226
227
228
229

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaing
            the aspect ratio. i.e, if height > width, then image will be rescaled to
230
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
231
232
233
234
235
236
237
238
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
Tongzhou Wang's avatar
Tongzhou Wang committed
239
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


264
def pad(img, padding, fill=0, padding_mode='constant'):
265
    r"""Pad the given PIL Image on all sides with specified padding mode and fill value.
266
267
268
269
270
271
272
273

    Args:
        img (PIL Image): Image to be padded.
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
274
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
275
            length 3, it is used to fill R, G, B channels respectively.
276
277
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
278
279
280
281
282
283
284
285
286
287
288
289
290
291

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
292
293
294
295
296
297
298
299
300
301
302

    Returns:
        PIL Image: Padded image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if not isinstance(padding, (numbers.Number, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError('Got inappropriate fill arg')
303
304
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')
305

Tongzhou Wang's avatar
Tongzhou Wang committed
306
    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
307
308
309
        raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

310
311
312
313
    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if padding_mode == 'constant':
surgan12's avatar
surgan12 committed
314
315
316
317
318
319
        if img.mode == 'P':
            palette = img.getpalette()
            image = ImageOps.expand(img, border=padding, fill=fill)
            image.putpalette(palette)
            return image

320
321
322
323
        return ImageOps.expand(img, border=padding, fill=fill)
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
Tongzhou Wang's avatar
Tongzhou Wang committed
324
        if isinstance(padding, Sequence) and len(padding) == 2:
325
326
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
Tongzhou Wang's avatar
Tongzhou Wang committed
327
        if isinstance(padding, Sequence) and len(padding) == 4:
328
329
330
331
332
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

surgan12's avatar
surgan12 committed
333
334
335
336
337
338
339
340
        if img.mode == 'P':
            palette = img.getpalette()
            img = np.asarray(img)
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

341
342
343
344
345
346
347
348
349
        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
350
351
352
353
354
355
356


def crop(img, i, j, h, w):
    """Crop the given PIL Image.

    Args:
        img (PIL Image): Image to be cropped.
357
358
359
360
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the cropped image.
        w (int): Width of the cropped image.
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.crop((j, i, j + w, i + h))


def center_crop(img, output_size):
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
    w, h = img.size
    th, tw = output_size
    i = int(round((h - th) / 2.))
    j = int(round((w - tw) / 2.))
    return crop(img, i, j, th, tw)


def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR):
    """Crop the given PIL Image and resize it to desired size.

384
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
385
386
387

    Args:
        img (PIL Image): Image to be cropped.
388
389
390
391
        i (int): i in (i,j) i.e coordinates of the upper left corner
        j (int): j in (i,j) i.e coordinates of the upper left corner
        h (int): Height of the cropped image.
        w (int): Width of the cropped image.
392
        size (sequence or int): Desired output size. Same semantics as ``resize``.
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    assert _is_pil_image(img), 'img should be PIL Image'
    img = crop(img, i, j, h, w)
    img = resize(img, size, interpolation)
    return img


def hflip(img):
    """Horizontally flip the given PIL Image.

    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Horizontall flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_LEFT_RIGHT)


419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
def _get_perspective_coeffs(startpoints, endpoints):
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

    In Perspective Transform each pixel (x, y) in the orignal image gets transformed as,
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
        List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image,
        List containing [top-left, top-right, bottom-right, bottom-left] of the transformed
                   image
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
    matrix = []

    for p1, p2 in zip(endpoints, startpoints):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    A = torch.tensor(matrix, dtype=torch.float)
    B = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.gels(B, A)[0]
    return res.squeeze_(1).tolist()


def perspective(img, startpoints, endpoints, interpolation=Image.BICUBIC):
    """Perform perspective transform of the given PIL Image.

    Args:
        img (PIL Image): Image to be transformed.
449
450
        startpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image
        endpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
451
452
453
454
455
456
457
458
459
460
461
        interpolation: Default- Image.BICUBIC
    Returns:
        PIL Image:  Perspectively transformed Image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    coeffs = _get_perspective_coeffs(startpoints, endpoints)
    return img.transform(img.size, Image.PERSPECTIVE, coeffs, interpolation)


462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
def vflip(img):
    """Vertically flip the given PIL Image.

    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Vertically flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_TOP_BOTTOM)


def five_crop(img, size):
    """Crop the given PIL Image into four corners and the central crop.

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.
488

489
    Returns:
490
491
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    w, h = img.size
    crop_h, crop_w = size
    if crop_w > w or crop_h > h:
        raise ValueError("Requested crop size {} is bigger than input size {}".format(size,
                                                                                      (h, w)))
    tl = img.crop((0, 0, crop_w, crop_h))
    tr = img.crop((w - crop_w, 0, w, crop_h))
    bl = img.crop((0, h - crop_h, crop_w, h))
    br = img.crop((w - crop_w, h - crop_h, w, h))
    center = center_crop(img, (crop_h, crop_w))
    return (tl, tr, bl, br, center)


def ten_crop(img, size, vertical_flip=False):
512
513
    r"""Crop the given PIL Image into four corners and the central crop plus the
        flipped version of these (horizontal flipping is used by default).
514
515
516
517
518

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

519
520
521
522
523
524
525
526
527
528
    Args:
       size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
       vertical_flip (bool): Use vertical flipping instead of horizontal

    Returns:
       tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image.
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


def adjust_brightness(img, brightness_factor):
    """Adjust brightness of an Image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        PIL Image: Brightness adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Brightness(img)
    img = enhancer.enhance(brightness_factor)
    return img


def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        PIL Image: Contrast adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img


def adjust_saturation(img, saturation_factor):
    """Adjust color saturation of an image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        PIL Image: Saturation adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Color(img)
    img = enhancer.enhance(saturation_factor)
    return img


def adjust_hue(img, hue_factor):
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

616
617
618
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
    if not(-0.5 <= hue_factor <= 0.5):
        raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    input_mode = img.mode
    if input_mode in {'L', '1', 'I', 'F'}:
        return img

    h, s, v = img.convert('HSV').split()

    np_h = np.array(h, dtype=np.uint8)
    # uint8 addition take cares of rotation across boundaries
    with np.errstate(over='ignore'):
        np_h += np.uint8(hue_factor * 255)
    h = Image.fromarray(np_h, 'L')

    img = Image.merge('HSV', (h, s, v)).convert(input_mode)
    return img


def adjust_gamma(img, gamma, gain=1):
654
    r"""Perform gamma correction on an image.
655
656
657
658

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

659
660
661
662
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
663

664
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
665
666
667

    Args:
        img (PIL Image): PIL Image to be adjusted.
668
669
670
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
671
672
673
674
675
676
677
678
679
680
681
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

682
683
    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part
684

685
    img = img.convert(input_mode)
686
    return img
687
688
689


def rotate(img, angle, resample=False, expand=False, center=None):
690
    """Rotate the image by angle.
691
692
693
694


    Args:
        img (PIL Image): PIL Image to be rotated.
695
696
697
698
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
699
700
701
702
703
704
705
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
706

707
    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
708

709
    """
710

711
712
713
714
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.rotate(angle, resample, expand, center)
715
716


717
718
719
720
721
722
723
724
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
ptrblck's avatar
ptrblck committed
725
726
    #       RSS(a, scale, shear) = [ cos(a + shear_y)*scale    -sin(a + shear_x)*scale     0]
    #                              [ sin(a + shear_y)*scale    cos(a + shear_x)*scale     0]
727
728
729
730
    #                              [     0                  0          1]
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

    angle = math.radians(angle)
ptrblck's avatar
ptrblck committed
731
732
733
734
735
736
737
738
739
    if isinstance(shear, (tuple, list)) and len(shear) == 2:
        shear = [math.radians(s) for s in shear]
    elif isinstance(shear, numbers.Number):
        shear = math.radians(shear)
        shear = [shear, 0]
    else:
        raise ValueError(
            "Shear should be a single value or a tuple/list containing " +
            "two values. Got {}".format(shear))
740
741
742
    scale = 1.0 / scale

    # Inverted rotation matrix with scale and shear
ptrblck's avatar
ptrblck committed
743
744
    d = math.cos(angle + shear[0]) * math.cos(angle + shear[1]) + \
        math.sin(angle + shear[0]) * math.sin(angle + shear[1])
745
    matrix = [
ptrblck's avatar
ptrblck committed
746
747
        math.cos(angle + shear[0]), math.sin(angle + shear[0]), 0,
        -math.sin(angle + shear[1]), math.cos(angle + shear[1]), 0
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    ]
    matrix = [scale / d * m for m in matrix]

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
    matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
    matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
    matrix[2] += center[0]
    matrix[5] += center[1]
    return matrix


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """Apply affine transformation on the image keeping image center invariant

    Args:
        img (PIL Image): PIL Image to be rotated.
766
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
767
768
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
769
770
771
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
        If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
        the second value corresponds to a shear parallel to the y axis.
772
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
773
            An optional resampling filter.
774
775
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
776
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
777
778
779
780
781
782
783
784
785
786
787
788
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
789
    kwargs = {"fillcolor": fillcolor} if PILLOW_VERSION[0] >= '5' else {}
790
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
791
792


793
794
795
796
797
798
799
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
800
801
802
803
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img
819
820


821
def erase(img, i, j, h, w, v, inplace=False):
822
823
824
825
826
827
828
829
830
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
831
        inplace(bool, optional): For in-place operations. By default is set False.
832
833
834
835
836
837
838

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

839
840
841
    if not inplace:
        img = img.clone()

842
843
    img[:, i:i + h, j:j + w] = v
    return img