functional.py 31.9 KB
Newer Older
1
2
from __future__ import division
import torch
Tongzhou Wang's avatar
Tongzhou Wang committed
3
import sys
4
import math
5
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION
6
7
8
9
10
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
11
from numpy import sin, cos, tan
12
13
14
15
import numbers
import collections
import warnings

Tongzhou Wang's avatar
Tongzhou Wang committed
16
17
18
19
20
21
22
if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

23
24
25
26
27
28
29
30
31
32
33
34

def _is_pil_image(img):
    if accimage is not None:
        return isinstance(img, (Image.Image, accimage.Image))
    else:
        return isinstance(img, Image.Image)


def _is_tensor_image(img):
    return torch.is_tensor(img) and img.ndimension() == 3


35
36
37
38
def _is_numpy(img):
    return isinstance(img, np.ndarray)


39
def _is_numpy_image(img):
40
    return img.ndim in {2, 3}
41
42
43
44
45
46
47
48
49
50
51
52
53


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    See ``ToTensor`` for more details.

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
54
    if not(_is_pil_image(pic) or _is_numpy(pic)):
55
56
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

57
58
59
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

60
61
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
62
63
64
        if pic.ndim == 2:
            pic = pic[:, :, None]

65
66
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        # backward compatibility
67
68
69
70
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
71
72
73
74
75
76
77
78
79
80
81

    if accimage is not None and isinstance(pic, accimage.Image):
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
        pic.copyto(nppic)
        return torch.from_numpy(nppic)

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
82
83
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
84
85
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
86
87
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
surgan12's avatar
surgan12 committed
88
    # PIL image mode: L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    if pic.mode == 'YCbCr':
        nchannel = 3
    elif pic.mode == 'I;16':
        nchannel = 1
    else:
        nchannel = len(pic.mode)
    img = img.view(pic.size[1], pic.size[0], nchannel)
    # put it from HWC to CHW format
    # yikes, this transpose takes 80% of the loading time/CPU
    img = img.transpose(0, 1).transpose(0, 2).contiguous()
    if isinstance(img, torch.ByteTensor):
        return img.float().div(255)
    else:
        return img


def to_pil_image(pic, mode=None):
    """Convert a tensor or an ndarray to PIL Image.

108
    See :class:`~torchvision.transforms.ToPILImage` for more details.
109
110
111
112
113

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

114
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
115
116
117
118

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
119
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
120
121
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
122
123
124
125
126
127
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
128
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
129
130
131
132
133
134
135
136
137

    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

138
    npimg = pic
139
    if isinstance(pic, torch.FloatTensor) and mode != 'F':
140
        pic = pic.mul(255).byte()
Varun Agrawal's avatar
Varun Agrawal committed
141
    if isinstance(pic, torch.Tensor):
142
143
144
145
146
147
148
149
150
151
152
        npimg = np.transpose(pic.numpy(), (1, 2, 0))

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
153
        elif npimg.dtype == np.int16:
154
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
155
        elif npimg.dtype == np.int32:
156
157
158
159
160
161
162
163
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
164
165
166
167
168
169
170
171
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

172
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
173
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


surgan12's avatar
surgan12 committed
192
def normalize(tensor, mean, std, inplace=False):
193
194
    """Normalize a tensor image with mean and standard deviation.

195
    .. note::
surgan12's avatar
surgan12 committed
196
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
197

198
    See :class:`~torchvision.transforms.Normalize` for more details.
199
200
201
202

    Args:
        tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
        mean (sequence): Sequence of means for each channel.
203
        std (sequence): Sequence of standard deviations for each channel.
204
        inplace(bool,optional): Bool to make this operation inplace.
205
206
207
208
209
210

    Returns:
        Tensor: Normalized Tensor image.
    """
    if not _is_tensor_image(tensor):
        raise TypeError('tensor is not a torch image.')
211

surgan12's avatar
surgan12 committed
212
213
214
    if not inplace:
        tensor = tensor.clone()

215
216
217
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
surgan12's avatar
surgan12 committed
218
    tensor.sub_(mean[:, None, None]).div_(std[:, None, None])
219
    return tensor
220
221
222


def resize(img, size, interpolation=Image.BILINEAR):
223
    r"""Resize the input PIL Image to the given size.
224
225
226
227
228
229
230

    Args:
        img (PIL Image): Image to be resized.
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaing
            the aspect ratio. i.e, if height > width, then image will be rescaled to
231
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`
232
233
234
235
236
237
238
239
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``

    Returns:
        PIL Image: Resized image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
Tongzhou Wang's avatar
Tongzhou Wang committed
240
    if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = img.size
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
            return img.resize((ow, oh), interpolation)
        else:
            oh = size
            ow = int(size * w / h)
            return img.resize((ow, oh), interpolation)
    else:
        return img.resize(size[::-1], interpolation)


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


265
def pad(img, padding, fill=0, padding_mode='constant'):
266
    r"""Pad the given PIL Image on all sides with specified padding mode and fill value.
267
268
269
270
271
272
273
274

    Args:
        img (PIL Image): Image to be padded.
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
275
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
276
            length 3, it is used to fill R, G, B channels respectively.
277
278
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
279
280
281
282
283
284
285
286
287
288
289
290
291
292

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
293
294
295
296
297
298
299
300
301
302
303

    Returns:
        PIL Image: Padded image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if not isinstance(padding, (numbers.Number, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, tuple)):
        raise TypeError('Got inappropriate fill arg')
304
305
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')
306

Tongzhou Wang's avatar
Tongzhou Wang committed
307
    if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
308
309
310
        raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

311
312
313
314
    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if padding_mode == 'constant':
surgan12's avatar
surgan12 committed
315
316
317
318
319
320
        if img.mode == 'P':
            palette = img.getpalette()
            image = ImageOps.expand(img, border=padding, fill=fill)
            image.putpalette(palette)
            return image

321
322
323
324
        return ImageOps.expand(img, border=padding, fill=fill)
    else:
        if isinstance(padding, int):
            pad_left = pad_right = pad_top = pad_bottom = padding
Tongzhou Wang's avatar
Tongzhou Wang committed
325
        if isinstance(padding, Sequence) and len(padding) == 2:
326
327
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
Tongzhou Wang's avatar
Tongzhou Wang committed
328
        if isinstance(padding, Sequence) and len(padding) == 4:
329
330
331
332
333
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]

surgan12's avatar
surgan12 committed
334
335
336
337
338
339
340
341
        if img.mode == 'P':
            palette = img.getpalette()
            img = np.asarray(img)
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
            img = Image.fromarray(img)
            img.putpalette(palette)
            return img

342
343
344
345
346
347
348
349
350
        img = np.asarray(img)
        # RGB image
        if len(img.shape) == 3:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
        # Grayscale image
        if len(img.shape) == 2:
            img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)

        return Image.fromarray(img)
351
352


353
def crop(img, top, left, height, width):
354
355
    """Crop the given PIL Image.
    Args:
356
357
358
359
360
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
361
362
363
364
365
366
    Returns:
        PIL Image: Cropped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

367
    return img.crop((left, top, left + width, top + height))
368
369
370


def center_crop(img, output_size):
371
372
373
374
375
376
377
378
379
    """Crop the given PIL Image and resize it to desired size.

        Args:
            img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions
        Returns:
            PIL Image: Cropped image.
        """
380
381
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
382
383
384
385
386
    image_width, image_height = img.size
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
    return crop(img, crop_top, crop_left, crop_height, crop_width)
387
388


389
def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINEAR):
390
391
    """Crop the given PIL Image and resize it to desired size.

392
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
393
394

    Args:
395
396
397
398
399
        img (PIL Image): Image to be cropped. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
400
        size (sequence or int): Desired output size. Same semantics as ``resize``.
401
402
403
404
405
406
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``.
    Returns:
        PIL Image: Cropped image.
    """
    assert _is_pil_image(img), 'img should be PIL Image'
407
    img = crop(img, top, left, height, width)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    img = resize(img, size, interpolation)
    return img


def hflip(img):
    """Horizontally flip the given PIL Image.

    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Horizontall flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_LEFT_RIGHT)


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
def _get_perspective_coeffs(startpoints, endpoints):
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

    In Perspective Transform each pixel (x, y) in the orignal image gets transformed as,
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
        List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image,
        List containing [top-left, top-right, bottom-right, bottom-left] of the transformed
                   image
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
    matrix = []

    for p1, p2 in zip(endpoints, startpoints):
        matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

    A = torch.tensor(matrix, dtype=torch.float)
    B = torch.tensor(startpoints, dtype=torch.float).view(8)
448
    res = torch.lstsq(B, A)[0]
449
450
451
452
453
454
455
456
    return res.squeeze_(1).tolist()


def perspective(img, startpoints, endpoints, interpolation=Image.BICUBIC):
    """Perform perspective transform of the given PIL Image.

    Args:
        img (PIL Image): Image to be transformed.
457
458
        startpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the orignal image
        endpoints: List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image
459
460
461
462
463
464
465
466
467
468
469
        interpolation: Default- Image.BICUBIC
    Returns:
        PIL Image:  Perspectively transformed Image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    coeffs = _get_perspective_coeffs(startpoints, endpoints)
    return img.transform(img.size, Image.PERSPECTIVE, coeffs, interpolation)


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def vflip(img):
    """Vertically flip the given PIL Image.

    Args:
        img (PIL Image): Image to be flipped.

    Returns:
        PIL Image:  Vertically flipped image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    return img.transpose(Image.FLIP_TOP_BOTTOM)


def five_crop(img, size):
    """Crop the given PIL Image into four corners and the central crop.

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.
496

497
    Returns:
498
499
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
500
501
502
503
504
505
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

506
507
508
509
510
511
512
513
514
515
516
517
    image_width, image_height = img.size
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = img.crop((0, 0, crop_width, crop_height))
    tr = img.crop((image_width - crop_width, 0, image_width, crop_height))
    bl = img.crop((0, image_height - crop_height, crop_width, image_height))
    br = img.crop((image_width - crop_width, image_height - crop_height,
                   image_width, image_height))
    center = center_crop(img, (crop_height, crop_width))
518
519
520
521
    return (tl, tr, bl, br, center)


def ten_crop(img, size, vertical_flip=False):
522
523
    r"""Crop the given PIL Image into four corners and the central crop plus the
        flipped version of these (horizontal flipping is used by default).
524
525
526
527
528

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

529
530
531
532
533
534
535
536
537
538
    Args:
       size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
       vertical_flip (bool): Use vertical flipping instead of horizontal

    Returns:
       tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image.
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
    else:
        assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


def adjust_brightness(img, brightness_factor):
    """Adjust brightness of an Image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        PIL Image: Brightness adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Brightness(img)
    img = enhancer.enhance(brightness_factor)
    return img


def adjust_contrast(img, contrast_factor):
    """Adjust contrast of an Image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        PIL Image: Contrast adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Contrast(img)
    img = enhancer.enhance(contrast_factor)
    return img


def adjust_saturation(img, saturation_factor):
    """Adjust color saturation of an image.

    Args:
        img (PIL Image): PIL Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        PIL Image: Saturation adjusted image.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    enhancer = ImageEnhance.Color(img)
    img = enhancer.enhance(saturation_factor)
    return img


def adjust_hue(img, hue_factor):
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

626
627
628
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

    Args:
        img (PIL Image): PIL Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        PIL Image: Hue adjusted image.
    """
    if not(-0.5 <= hue_factor <= 0.5):
        raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    input_mode = img.mode
    if input_mode in {'L', '1', 'I', 'F'}:
        return img

    h, s, v = img.convert('HSV').split()

    np_h = np.array(h, dtype=np.uint8)
    # uint8 addition take cares of rotation across boundaries
    with np.errstate(over='ignore'):
        np_h += np.uint8(hue_factor * 255)
    h = Image.fromarray(np_h, 'L')

    img = Image.merge('HSV', (h, s, v)).convert(input_mode)
    return img


def adjust_gamma(img, gamma, gain=1):
664
    r"""Perform gamma correction on an image.
665
666
667
668

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

669
670
671
672
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
673

674
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
675
676
677

    Args:
        img (PIL Image): PIL Image to be adjusted.
678
679
680
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
681
682
683
684
685
686
687
688
689
690
691
        gain (float): The constant multiplier.
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if gamma < 0:
        raise ValueError('Gamma should be a non-negative real number')

    input_mode = img.mode
    img = img.convert('RGB')

692
693
    gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
    img = img.point(gamma_map)  # use PIL's point-function to accelerate this part
694

695
    img = img.convert(input_mode)
696
    return img
697
698


699
def rotate(img, angle, resample=False, expand=False, center=None, fill=0):
700
    """Rotate the image by angle.
701
702
703
704


    Args:
        img (PIL Image): PIL Image to be rotated.
705
706
707
708
        angle (float or int): In degrees degrees counter clockwise order.
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
            An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
709
710
711
712
713
714
715
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
716
717
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.
718

719
    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters
720

721
    """
722

723
724
725
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

726
727
728
729
    if isinstance(fill, int):
        fill = tuple([fill] * 3)

    return img.rotate(angle, resample, expand, center, fillcolor=fill)
730
731


732
733
734
735
736
737
738
739
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
740
741
742
743
744
745
746
747
748
749
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
750
751
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

752
    if isinstance(shear, numbers.Number):
ptrblck's avatar
ptrblck committed
753
        shear = [shear, 0]
754
755

    if not isinstance(shear, (tuple, list)) and len(shear) == 2:
ptrblck's avatar
ptrblck committed
756
757
758
        raise ValueError(
            "Shear should be a single value or a tuple/list containing " +
            "two values. Got {}".format(shear))
759
760
761
762
763
764
765
766
767
768
769
770

    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
    a = cos(rot - sy) / cos(sy)
    b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
    c = sin(rot - sy) / cos(sy)
    d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
771
772

    # Inverted rotation matrix with scale and shear
773
774
775
776
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
    M = [d, -b, 0,
         -c, a, 0]
    M = [x / scale for x in M]
777
778

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
779
780
    M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
    M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
781
782

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
783
784
785
    M[2] += cx
    M[5] += cy
    return M
786
787
788
789
790
791
792


def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
    """Apply affine transformation on the image keeping image center invariant

    Args:
        img (PIL Image): PIL Image to be rotated.
793
        angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction.
794
795
        translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
        scale (float): overall scale
ptrblck's avatar
ptrblck committed
796
797
798
        shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction.
        If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while
        the second value corresponds to a shear parallel to the y axis.
799
        resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional):
800
            An optional resampling filter.
801
802
            See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
803
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
804
805
806
807
808
809
810
811
812
813
814
815
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
        "Argument translate should be a list or tuple of length 2"

    assert scale > 0.0, "Argument scale should be positive"

    output_size = img.size
    center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
816
    kwargs = {"fillcolor": fillcolor} if PILLOW_VERSION[0] >= '5' else {}
817
    return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
818
819


820
821
822
823
824
825
826
def to_grayscale(img, num_output_channels=1):
    """Convert image to grayscale version of image.

    Args:
        img (PIL Image): Image to be converted to grayscale.

    Returns:
827
828
829
830
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    """
    if not _is_pil_image(img):
        raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

    if num_output_channels == 1:
        img = img.convert('L')
    elif num_output_channels == 3:
        img = img.convert('L')
        np_img = np.array(img, dtype=np.uint8)
        np_img = np.dstack([np_img, np_img, np_img])
        img = Image.fromarray(np_img, 'RGB')
    else:
        raise ValueError('num_output_channels should be either 1 or 3')

    return img
846
847


848
def erase(img, i, j, h, w, v, inplace=False):
849
850
851
852
853
854
855
856
857
    """ Erase the input Tensor Image with given value.

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
858
        inplace(bool, optional): For in-place operations. By default is set False.
859
860
861
862
863
864
865

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

866
867
868
    if not inplace:
        img = img.clone()

869
870
    img[:, i:i + h, j:j + w] = v
    return img