phototour.py 6.18 KB
Newer Older
edgarriba's avatar
edgarriba committed
1
2
3
4
5
6
7
8
import os
import errno
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data

soumith's avatar
soumith committed
9
10
from .utils import download_url, check_integrity

edgarriba's avatar
edgarriba committed
11
12

class PhotoTour(data.Dataset):
13
14
15
16
17
18
19
20
21
22
23
24
25
    """`Learning Local Image Descriptors Data <http://phototour.cs.washington.edu/patches/default.htm>`_ Dataset.


    Args:
        root (string): Root directory where images are.
        name (string): Name of the dataset to load.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
edgarriba's avatar
edgarriba committed
26
    urls = {
soumith's avatar
soumith committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        'notredame': [
            'http://www.iis.ee.ic.ac.uk/~vbalnt/phototourism-patches/notredame.zip',
            'notredame.zip',
            '509eda8535847b8c0a90bbb210c83484'
        ],
        'yosemite': [
            'http://www.iis.ee.ic.ac.uk/~vbalnt/phototourism-patches/yosemite.zip',
            'yosemite.zip',
            '533b2e8eb7ede31be40abc317b2fd4f0'
        ],
        'liberty': [
            'http://www.iis.ee.ic.ac.uk/~vbalnt/phototourism-patches/liberty.zip',
            'liberty.zip',
            'fdd9152f138ea5ef2091746689176414'
        ],
edgarriba's avatar
edgarriba committed
42
43
44
45
46
47
48
49
50
51
    }
    mean = {'notredame': 0.4854, 'yosemite': 0.4844, 'liberty': 0.4437}
    std = {'notredame': 0.1864, 'yosemite': 0.1818, 'liberty': 0.2019}
    lens = {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092}

    image_ext = 'bmp'
    info_file = 'info.txt'
    matches_files = 'm50_100000_100000_0.txt'

    def __init__(self, root, name, train=True, transform=None, download=False):
52
        self.root = os.path.expanduser(root)
edgarriba's avatar
edgarriba committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        self.name = name
        self.data_dir = os.path.join(root, name)
        self.data_down = os.path.join(root, '{}.zip'.format(name))
        self.data_file = os.path.join(root, '{}.pt'.format(name))

        self.train = train
        self.transform = transform

        self.mean = self.mean[name]
        self.std = self.std[name]

        if download:
            self.download()

soumith's avatar
soumith committed
67
        if not self._check_datafile_exists():
edgarriba's avatar
edgarriba committed
68
69
70
71
72
73
74
            raise RuntimeError('Dataset not found.' +
                               ' You can use download=True to download it')

        # load the serialized data
        self.data, self.labels, self.matches = torch.load(self.data_file)

    def __getitem__(self, index):
75
76
77
78
79
80
81
        """
        Args:
            index (int): Index

        Returns:
            tuple: (data1, data2, matches)
        """
edgarriba's avatar
edgarriba committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        if self.train:
            data = self.data[index]
            if self.transform is not None:
                data = self.transform(data)
            return data
        m = self.matches[index]
        data1, data2 = self.data[m[0]], self.data[m[1]]
        if self.transform is not None:
            data1 = self.transform(data1)
            data2 = self.transform(data2)
        return data1, data2, m[2]

    def __len__(self):
        if self.train:
            return self.lens[self.name]
        return len(self.matches)

soumith's avatar
soumith committed
99
    def _check_datafile_exists(self):
edgarriba's avatar
edgarriba committed
100
101
102
103
104
105
        return os.path.exists(self.data_file)

    def _check_downloaded(self):
        return os.path.exists(self.data_dir)

    def download(self):
soumith's avatar
soumith committed
106
        if self._check_datafile_exists():
edgarriba's avatar
edgarriba committed
107
108
109
110
111
            print('# Found cached data {}'.format(self.data_file))
            return

        if not self._check_downloaded():
            # download files
soumith's avatar
soumith committed
112
113
114
115
            url = self.urls[self.name][0]
            filename = self.urls[self.name][1]
            md5 = self.urls[self.name][2]
            fpath = os.path.join(self.root, filename)
edgarriba's avatar
edgarriba committed
116

soumith's avatar
soumith committed
117
            download_url(url, self.root, filename, md5)
edgarriba's avatar
edgarriba committed
118
119
120
121

            print('# Extracting data {}\n'.format(self.data_down))

            import zipfile
soumith's avatar
soumith committed
122
            with zipfile.ZipFile(fpath, 'r') as z:
edgarriba's avatar
edgarriba committed
123
                z.extractall(self.data_dir)
soumith's avatar
soumith committed
124
125

            os.unlink(fpath)
edgarriba's avatar
edgarriba committed
126
127
128
129

        # process and save as torch files
        print('# Caching data {}'.format(self.data_file))

soumith's avatar
soumith committed
130
        dataset = (
edgarriba's avatar
edgarriba committed
131
132
133
134
135
136
            read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
            read_info_file(self.data_dir, self.info_file),
            read_matches_files(self.data_dir, self.matches_files)
        )

        with open(self.data_file, 'wb') as f:
soumith's avatar
soumith committed
137
            torch.save(dataset, f)
edgarriba's avatar
edgarriba committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160


def read_image_file(data_dir, image_ext, n):
    """Return a Tensor containing the patches
    """
    def PIL2array(_img):
        """Convert PIL image type to numpy 2D array
        """
        return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)

    def find_files(_data_dir, _image_ext):
        """Return a list with the file names of the images containing the patches
        """
        files = []
        # find those files with the specified extension
        for file_dir in os.listdir(_data_dir):
            if file_dir.endswith(_image_ext):
                files.append(os.path.join(_data_dir, file_dir))
        return sorted(files)  # sort files in ascend order to keep relations

    patches = []
    list_files = find_files(data_dir, image_ext)

soumith's avatar
soumith committed
161
162
    for fpath in list_files:
        img = Image.open(fpath)
edgarriba's avatar
edgarriba committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        for y in range(0, 1024, 64):
            for x in range(0, 1024, 64):
                patch = img.crop((x, y, x + 64, y + 64))
                patches.append(PIL2array(patch))
    return torch.ByteTensor(np.array(patches[:n]))


def read_info_file(data_dir, info_file):
    """Return a Tensor containing the list of labels
       Read the file and keep only the ID of the 3D point.
    """
    labels = []
    with open(os.path.join(data_dir, info_file), 'r') as f:
        labels = [int(line.split()[0]) for line in f]
    return torch.LongTensor(labels)


def read_matches_files(data_dir, matches_file):
    """Return a Tensor containing the ground truth matches
       Read the file and keep only 3D point ID.
       Matches are represented with a 1, non matches with a 0.
    """
    matches = []
    with open(os.path.join(data_dir, matches_file), 'r') as f:
        for line in f:
            l = line.split()
            matches.append([int(l[0]), int(l[3]), int(l[1] == l[4])])
    return torch.LongTensor(matches)