datasets_utils.py 38.1 KB
Newer Older
1
2
3
4
5
6
7
import contextlib
import functools
import importlib
import inspect
import itertools
import os
import pathlib
8
import random
9
import shutil
10
import string
11
import struct
12
import tarfile
13
14
import unittest
import unittest.mock
15
import zipfile
16
from collections import defaultdict
17
18
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union

19
20
import numpy as np

21
22
import PIL
import PIL.Image
23
import pytest
24
25
26
import torch
import torchvision.datasets
import torchvision.io
27
from common_utils import disable_console_output, get_tmp_dir
28
from torch.utils._pytree import tree_any
29
from torchvision.transforms.functional import get_dimensions
30
31
32
33
34
35
36
37
38
39
40
41
42
43


__all__ = [
    "UsageError",
    "lazy_importer",
    "test_all_configs",
    "DatasetTestCase",
    "ImageDatasetTestCase",
    "VideoDatasetTestCase",
    "create_image_or_video_tensor",
    "create_image_file",
    "create_image_folder",
    "create_video_file",
    "create_video_folder",
44
45
    "make_tar",
    "make_zip",
46
    "create_random_string",
47
48
49
]


50
class UsageError(Exception):
51
52
53
54
    """Should be raised in case an error happens in the setup rather than the test."""


class LazyImporter:
Prabhat Roy's avatar
Prabhat Roy committed
55
    r"""Lazy importer for additional dependencies.
56
57
58
59
60
61
62
63
64
65
66

    Some datasets require additional packages that are no direct dependencies of torchvision. Instances of this class
    provide modules listed in MODULES as attributes. They are only imported when accessed.

    """
    MODULES = (
        "av",
        "lmdb",
        "pycocotools",
        "requests",
        "scipy.io",
Philip Meier's avatar
Philip Meier committed
67
        "scipy.sparse",
68
        "h5py",
69
70
71
    )

    def __init__(self):
72
        modules = defaultdict(list)
73
        for module in self.MODULES:
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            module, *submodules = module.split(".", 1)
            if submodules:
                modules[module].append(submodules[0])
            else:
                # This introduces the module so that it is known when we later iterate over the dictionary.
                modules.__missing__(module)

        for module, submodules in modules.items():
            # We need the quirky 'module=module' and submodules=submodules arguments to the lambda since otherwise the
            # lookup for these would happen at runtime rather than at definition. Thus, without it, every property
            # would try to import the last item in 'modules'
            setattr(
                type(self),
                module,
                property(lambda self, module=module, submodules=submodules: LazyImporter._import(module, submodules)),
            )
90
91

    @staticmethod
92
    def _import(package, subpackages):
93
        try:
94
            module = importlib.import_module(package)
95
96
        except ImportError as error:
            raise UsageError(
97
98
                f"Failed to import module '{package}'. "
                f"This probably means that the current test case needs '{package}' installed, "
99
                f"but it is not a dependency of torchvision. "
100
                f"You need to install it manually, for example 'pip install {package}'."
101
102
            ) from error

103
104
105
106
107
        for name in subpackages:
            importlib.import_module(f".{name}", package=package)

        return module

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

lazy_importer = LazyImporter()


def requires_lazy_imports(*modules):
    def outer_wrapper(fn):
        @functools.wraps(fn)
        def inner_wrapper(*args, **kwargs):
            for module in modules:
                getattr(lazy_importer, module.replace(".", "_"))
            return fn(*args, **kwargs)

        return inner_wrapper

    return outer_wrapper


def test_all_configs(test):
    """Decorator to run test against all configurations.

128
129
130
131
    Add this as decorator to an arbitrary test to run it against all configurations. This includes
    :attr:`DatasetTestCase.DEFAULT_CONFIG` and :attr:`DatasetTestCase.ADDITIONAL_CONFIGS`.

    The current configuration is provided as the first parameter for the test:
132
133
134

    .. code-block::

135
        @test_all_configs()
136
137
        def test_foo(self, config):
            pass
138
139
140

    .. note::

141
        This will try to remove duplicate configurations. During this process it will not preserve a potential
142
        ordering of the configurations or an inner ordering of a configuration.
143
144
    """

145
146
    def maybe_remove_duplicates(configs):
        try:
147
            return [dict(config_) for config_ in {tuple(sorted(config.items())) for config in configs}]
148
149
        except TypeError:
            # A TypeError will be raised if a value of any config is not hashable, e.g. a list. In that case duplicate
150
            # removal would be a lot more elaborate, and we simply bail out.
151
152
            return configs

153
154
    @functools.wraps(test)
    def wrapper(self):
155
156
157
158
159
160
161
162
163
164
165
166
        configs = []
        if self.DEFAULT_CONFIG is not None:
            configs.append(self.DEFAULT_CONFIG)
        if self.ADDITIONAL_CONFIGS is not None:
            configs.extend(self.ADDITIONAL_CONFIGS)

        if not configs:
            configs = [self._KWARG_DEFAULTS.copy()]
        else:
            configs = maybe_remove_duplicates(configs)

        for config in configs:
167
168
169
170
171
172
173
174
175
176
177
178
179
180
            with self.subTest(**config):
                test(self, config)

    return wrapper


class DatasetTestCase(unittest.TestCase):
    """Abstract base class for all dataset testcases.

    You have to overwrite the following class attributes:

        - DATASET_CLASS (torchvision.datasets.VisionDataset): Class of dataset to be tested.
        - FEATURE_TYPES (Sequence[Any]): Types of the elements returned by index access of the dataset. Instead of
            providing these manually, you can instead subclass ``ImageDatasetTestCase`` or ``VideoDatasetTestCase```to
181
182
            get a reasonable default, that should work for most cases. Each entry of the sequence may be a tuple,
            to indicate multiple possible values.
183
184
185

    Optionally, you can overwrite the following class attributes:

186
187
188
189
190
191
192
        - DEFAULT_CONFIG (Dict[str, Any]): Config that will be used by default. If omitted, this defaults to all
            keyword arguments of the dataset minus ``transform``, ``target_transform``, ``transforms``, and
            ``download``. Overwrite this if you want to use a default value for a parameter for which the dataset does
            not provide one.
        - ADDITIONAL_CONFIGS (Sequence[Dict[str, Any]]): Additional configs that should be tested. Each dictionary can
            contain an arbitrary combination of dataset parameters that are **not** ``transform``, ``target_transform``,
            ``transforms``, or ``download``.
193
194
195
196
197
198
199
200
201
202
        - REQUIRED_PACKAGES (Iterable[str]): Additional dependencies to use the dataset. If these packages are not
            available, the tests are skipped.

    Additionally, you need to overwrite the ``inject_fake_data()`` method that provides the data that the tests rely on.
    The fake data should resemble the original data as close as necessary, while containing only few examples. During
    the creation of the dataset check-, download-, and extract-functions from ``torchvision.datasets.utils`` are
    disabled.

    Without further configuration, the testcase will test if

203
204
    1. the dataset raises a :class:`FileNotFoundError` or a :class:`RuntimeError` if the data files are not found or
       corrupted,
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    2. the dataset inherits from `torchvision.datasets.VisionDataset`,
    3. the dataset can be turned into a string,
    4. the feature types of a returned example matches ``FEATURE_TYPES``,
    5. the number of examples matches the injected fake data, and
    6. the dataset calls ``transform``, ``target_transform``, or ``transforms`` if available when accessing data.

    Case 3. to 6. are tested against all configurations in ``CONFIGS``.

    To add dataset-specific tests, create a new method that takes no arguments with ``test_`` as a name prefix:

    .. code-block::

        def test_foo(self):
            pass

    If you want to run the test against all configs, add the ``@test_all_configs`` decorator to the definition and
    accept a single argument:

    .. code-block::

        @test_all_configs
        def test_bar(self, config):
            pass

    Within the test you can use the ``create_dataset()`` method that yields the dataset as well as additional
    information provided by the ``ìnject_fake_data()`` method:

    .. code-block::

        def test_baz(self):
            with self.create_dataset() as (dataset, info):
                pass
    """

    DATASET_CLASS = None
    FEATURE_TYPES = None

242
243
    DEFAULT_CONFIG = None
    ADDITIONAL_CONFIGS = None
244
245
    REQUIRED_PACKAGES = None

246
    # These keyword arguments are checked by test_transforms in case they are available in DATASET_CLASS.
247
248
249
250
251
    _TRANSFORM_KWARGS = {
        "transform",
        "target_transform",
        "transforms",
    }
252
    # These keyword arguments get a 'special' treatment and should not be set in DEFAULT_CONFIG or ADDITIONAL_CONFIGS.
253
254
255
256
    _SPECIAL_KWARGS = {
        *_TRANSFORM_KWARGS,
        "download",
    }
257
258
259
260
261
262
263

    # These fields are populated during setupClass() within _populate_private_class_attributes()

    # This will be a dictionary containing all keyword arguments with their respective default values extracted from
    # the dataset constructor.
    _KWARG_DEFAULTS = None
    # This will be a set of all _SPECIAL_KWARGS that the dataset constructor takes.
264
265
    _HAS_SPECIAL_KWARG = None

266
    # These functions are disabled during dataset creation in create_dataset().
267
268
269
270
271
272
273
274
275
276
277
    _CHECK_FUNCTIONS = {
        "check_md5",
        "check_integrity",
    }
    _DOWNLOAD_EXTRACT_FUNCTIONS = {
        "download_url",
        "download_file_from_google_drive",
        "extract_archive",
        "download_and_extract_archive",
    }

278
279
280
281
282
283
    def dataset_args(self, tmpdir: str, config: Dict[str, Any]) -> Sequence[Any]:
        """Define positional arguments passed to the dataset.

        .. note::

            The default behavior is only valid if the dataset to be tested has ``root`` as the only required parameter.
284
            Otherwise, you need to overwrite this method.
285
286
287
288

        Args:
            tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
                to be created and in turn also for the fake data injected here.
289
290
            config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
                fields for all dataset parameters with default values.
291
292
293
294
295
296
297

        Returns:
            (Tuple[str]): ``tmpdir`` which corresponds to ``root`` for most datasets.
        """
        return (tmpdir,)

    def inject_fake_data(self, tmpdir: str, config: Dict[str, Any]) -> Union[int, Dict[str, Any]]:
298
299
        """Inject fake data for dataset into a temporary directory.

300
301
302
303
        During the creation of the dataset the download and extract logic is disabled. Thus, the fake data injected
        here needs to resemble the raw data, i.e. the state of the dataset directly after the files are downloaded and
        potentially extracted.

304
305
306
        Args:
            tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
                to be created and in turn also for the fake data injected here.
307
308
            config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
                fields for all dataset parameters with default values.
309
310
311

        Needs to return one of the following:

312
            1. (int): Number of examples in the dataset to be created, or
313
            2. (Dict[str, Any]): Additional information about the injected fake data. Must contain the field
314
                ``"num_examples"`` that corresponds to the number of examples in the dataset to be created.
315
316
317
318
319
320
321
322
        """
        raise NotImplementedError("You need to provide fake data in order for the tests to run.")

    @contextlib.contextmanager
    def create_dataset(
        self,
        config: Optional[Dict[str, Any]] = None,
        inject_fake_data: bool = True,
323
        patch_checks: Optional[bool] = None,
324
325
326
327
        **kwargs: Any,
    ) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
        r"""Create the dataset in a temporary directory.

328
329
330
331
332
333
334
335
        The configuration passed to the dataset is populated to contain at least all parameters with default values.
        For this the following order of precedence is used:

        1. Parameters in :attr:`kwargs`.
        2. Configuration in :attr:`config`.
        3. Configuration in :attr:`~DatasetTestCase.DEFAULT_CONFIG`.
        4. Default parameters of the dataset.

336
        Args:
337
            config (Optional[Dict[str, Any]]): Configuration that will be used to create the dataset.
338
339
            inject_fake_data (bool): If ``True`` (default) inject the fake data with :meth:`.inject_fake_data` before
                creating the dataset.
340
341
            patch_checks (Optional[bool]): If ``True`` disable integrity check logic while creating the dataset. If
                omitted defaults to the same value as ``inject_fake_data``.
342
343
344
345
346
347
348
349
            **kwargs (Any): Additional parameters passed to the dataset. These parameters take precedence in case they
                overlap with ``config``.

        Yields:
            dataset (torchvision.dataset.VisionDataset): Dataset.
            info (Dict[str, Any]): Additional information about the injected fake data. See :meth:`.inject_fake_data`
                for details.
        """
350
351
        if patch_checks is None:
            patch_checks = inject_fake_data
352
353

        special_kwargs, other_kwargs = self._split_kwargs(kwargs)
354
355
356
357
358
359
360
361
362

        complete_config = self._KWARG_DEFAULTS.copy()
        if self.DEFAULT_CONFIG:
            complete_config.update(self.DEFAULT_CONFIG)
        if config:
            complete_config.update(config)
        if other_kwargs:
            complete_config.update(other_kwargs)

363
364
        if "download" in self._HAS_SPECIAL_KWARG and special_kwargs.get("download", False):
            # override download param to False param if its default is truthy
365
            special_kwargs["download"] = False
366

367
368
369
        patchers = self._patch_download_extract()
        if patch_checks:
            patchers.update(self._patch_checks())
370
371

        with get_tmp_dir() as tmpdir:
372
373
            args = self.dataset_args(tmpdir, complete_config)
            info = self._inject_fake_data(tmpdir, complete_config) if inject_fake_data else None
374

375
            with self._maybe_apply_patches(patchers), disable_console_output():
376
                dataset = self.DATASET_CLASS(*args, **complete_config, **special_kwargs)
377

378
            yield dataset, info
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    @classmethod
    def setUpClass(cls):
        cls._verify_required_public_class_attributes()
        cls._populate_private_class_attributes()
        cls._process_optional_public_class_attributes()
        super().setUpClass()

    @classmethod
    def _verify_required_public_class_attributes(cls):
        if cls.DATASET_CLASS is None:
            raise UsageError(
                "The class attribute 'DATASET_CLASS' needs to be overwritten. "
                "It should contain the class of the dataset to be tested."
            )
        if cls.FEATURE_TYPES is None:
            raise UsageError(
                "The class attribute 'FEATURE_TYPES' needs to be overwritten. "
                "It should contain a sequence of types that the dataset returns when accessed by index."
            )

    @classmethod
    def _populate_private_class_attributes(cls):
402
403
404
405
406
407
408
409
410
411
412
        defaults = []
        for cls_ in cls.DATASET_CLASS.__mro__:
            if cls_ is torchvision.datasets.VisionDataset:
                break

            argspec = inspect.getfullargspec(cls_.__init__)

            if not argspec.defaults:
                continue

            defaults.append(
413
414
                {
                    kwarg: default
415
                    for kwarg, default in zip(argspec.args[-len(argspec.defaults) :], argspec.defaults)
416
417
                    if not kwarg.startswith("_")
                }
418
419
420
421
422
423
424
425
            )

            if not argspec.varkw:
                break

        kwarg_defaults = dict()
        for config in reversed(defaults):
            kwarg_defaults.update(config)
426

427
428
429
430
        has_special_kwargs = set()
        for name in cls._SPECIAL_KWARGS:
            if name not in kwarg_defaults:
                continue
431

432
433
434
435
436
            del kwarg_defaults[name]
            has_special_kwargs.add(name)

        cls._KWARG_DEFAULTS = kwarg_defaults
        cls._HAS_SPECIAL_KWARG = has_special_kwargs
437
438
439

    @classmethod
    def _process_optional_public_class_attributes(cls):
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        def check_config(config, name):
            special_kwargs = tuple(f"'{name}'" for name in cls._SPECIAL_KWARGS if name in config)
            if special_kwargs:
                raise UsageError(
                    f"{name} contains a value for the parameter(s) {', '.join(special_kwargs)}. "
                    f"These are handled separately by the test case and should not be set here. "
                    f"If you need to test some custom behavior regarding these parameters, "
                    f"you need to write a custom test (*not* test case), e.g. test_custom_transform()."
                )

        if cls.DEFAULT_CONFIG is not None:
            check_config(cls.DEFAULT_CONFIG, "DEFAULT_CONFIG")

        if cls.ADDITIONAL_CONFIGS is not None:
            for idx, config in enumerate(cls.ADDITIONAL_CONFIGS):
                check_config(config, f"CONFIGS[{idx}]")

        if cls.REQUIRED_PACKAGES:
            missing_pkgs = []
            for pkg in cls.REQUIRED_PACKAGES:
                try:
461
                    importlib.import_module(pkg)
462
463
464
465
                except ImportError:
                    missing_pkgs.append(f"'{pkg}'")

            if missing_pkgs:
466
                raise unittest.SkipTest(
467
468
                    f"The package(s) {', '.join(missing_pkgs)} are required to load the dataset "
                    f"'{cls.DATASET_CLASS.__name__}', but are not installed."
469
470
471
472
473
474
475
                )

    def _split_kwargs(self, kwargs):
        special_kwargs = kwargs.copy()
        other_kwargs = {key: special_kwargs.pop(key) for key in set(special_kwargs.keys()) - self._SPECIAL_KWARGS}
        return special_kwargs, other_kwargs

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    def _inject_fake_data(self, tmpdir, config):
        info = self.inject_fake_data(tmpdir, config)
        if info is None:
            raise UsageError(
                "The method 'inject_fake_data' needs to return at least an integer indicating the number of "
                "examples for the current configuration."
            )
        elif isinstance(info, int):
            info = dict(num_examples=info)
        elif not isinstance(info, dict):
            raise UsageError(
                f"The additional information returned by the method 'inject_fake_data' must be either an "
                f"integer indicating the number of examples for the current configuration or a dictionary with "
                f"the same content. Got {type(info)} instead."
            )
        elif "num_examples" not in info:
            raise UsageError(
                "The information dictionary returned by the method 'inject_fake_data' must contain a "
                "'num_examples' field that holds the number of examples for the current configuration."
            )
        return info

    def _patch_download_extract(self):
        module = inspect.getmodule(self.DATASET_CLASS).__name__
        return {unittest.mock.patch(f"{module}.{function}") for function in self._DOWNLOAD_EXTRACT_FUNCTIONS}
501

502
    def _patch_checks(self):
503
        module = inspect.getmodule(self.DATASET_CLASS).__name__
504
505
506
507
        return {unittest.mock.patch(f"{module}.{function}", return_value=True) for function in self._CHECK_FUNCTIONS}

    @contextlib.contextmanager
    def _maybe_apply_patches(self, patchers):
508
509
        with contextlib.ExitStack() as stack:
            mocks = {}
510
            for patcher in patchers:
511
                with contextlib.suppress(AttributeError):
512
513
                    mocks[patcher.target] = stack.enter_context(patcher)
            yield mocks
514

515
    def test_not_found_or_corrupted(self):
516
        with pytest.raises((FileNotFoundError, RuntimeError)):
517
518
519
520
521
            with self.create_dataset(inject_fake_data=False):
                pass

    def test_smoke(self):
        with self.create_dataset() as (dataset, _):
522
            assert isinstance(dataset, torchvision.datasets.VisionDataset)
523
524
525
526

    @test_all_configs
    def test_str_smoke(self, config):
        with self.create_dataset(config) as (dataset, _):
527
            assert isinstance(str(dataset), str)
528
529
530
531
532
533

    @test_all_configs
    def test_feature_types(self, config):
        with self.create_dataset(config) as (dataset, _):
            example = dataset[0]

534
535
536
            if len(self.FEATURE_TYPES) > 1:
                actual = len(example)
                expected = len(self.FEATURE_TYPES)
537
538
539
540
                assert (
                    actual == expected
                ), "The number of the returned features does not match the the number of elements in FEATURE_TYPES: "
                f"{actual} != {expected}"
541
542
            else:
                example = (example,)
543
544
545

            for idx, (feature, expected_feature_type) in enumerate(zip(example, self.FEATURE_TYPES)):
                with self.subTest(idx=idx):
546
                    assert isinstance(feature, expected_feature_type)
547
548
549
550

    @test_all_configs
    def test_num_examples(self, config):
        with self.create_dataset(config) as (dataset, info):
551
            assert len(dataset) == info["num_examples"]
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

    @test_all_configs
    def test_transforms(self, config):
        mock = unittest.mock.Mock(wraps=lambda *args: args[0] if len(args) == 1 else args)
        for kwarg in self._TRANSFORM_KWARGS:
            if kwarg not in self._HAS_SPECIAL_KWARG:
                continue

            mock.reset_mock()

            with self.subTest(kwarg=kwarg):
                with self.create_dataset(config, **{kwarg: mock}) as (dataset, _):
                    dataset[0]

                mock.assert_called()

568
569
    @test_all_configs
    def test_transforms_v2_wrapper(self, config):
570
        from torchvision.datapoints._datapoint import Datapoint
571
        from torchvision.datasets import wrap_dataset_for_transforms_v2
572
573

        try:
574
            with self.create_dataset(config) as (dataset, info):
575
576
577
578
579
580
581
582
583
584
585
586
                for target_keys in [None, "all"]:
                    if target_keys is not None and self.DATASET_CLASS not in {
                        torchvision.datasets.CocoDetection,
                        torchvision.datasets.VOCDetection,
                        torchvision.datasets.Kitti,
                        torchvision.datasets.WIDERFace,
                    }:
                        with self.assertRaisesRegex(ValueError, "`target_keys` is currently only supported for"):
                            wrap_dataset_for_transforms_v2(dataset, target_keys=target_keys)
                        continue

                    wrapped_dataset = wrap_dataset_for_transforms_v2(dataset, target_keys=target_keys)
587
588
                    assert isinstance(wrapped_dataset, self.DATASET_CLASS)
                    assert len(wrapped_dataset) == info["num_examples"]
589

590
                    wrapped_sample = wrapped_dataset[0]
591
                    assert tree_any(lambda item: isinstance(item, (Datapoint, PIL.Image.Image)), wrapped_sample)
592
        except TypeError as error:
593
594
595
            msg = f"No wrapper exists for dataset class {type(dataset).__name__}"
            if str(error).startswith(msg):
                pytest.skip(msg)
596
597
598
            raise error
        except RuntimeError as error:
            if "currently not supported by this wrapper" in str(error):
599
                pytest.skip("Config is currently not supported by this wrapper")
600
601
            raise error

602
603
604
605
606
607
608
609
610
611
612
613
614
615

class ImageDatasetTestCase(DatasetTestCase):
    """Abstract base class for image dataset testcases.

    - Overwrites the FEATURE_TYPES class attribute to expect a :class:`PIL.Image.Image` and an integer label.
    """

    FEATURE_TYPES = (PIL.Image.Image, int)

    @contextlib.contextmanager
    def create_dataset(
        self,
        config: Optional[Dict[str, Any]] = None,
        inject_fake_data: bool = True,
616
        patch_checks: Optional[bool] = None,
617
618
619
620
621
        **kwargs: Any,
    ) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
        with super().create_dataset(
            config=config,
            inject_fake_data=inject_fake_data,
622
            patch_checks=patch_checks,
623
624
            **kwargs,
        ) as (dataset, info):
625
            # PIL.Image.open() only loads the image metadata upfront and keeps the file open until the first access
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
            # to the pixel data occurs. Trying to delete such a file results in an PermissionError on Windows. Thus, we
            # force-load opened images.
            # This problem only occurs during testing since some tests, e.g. DatasetTestCase.test_feature_types open an
            # image, but never use the underlying data. During normal operation it is reasonable to assume that the
            # user wants to work with the image he just opened rather than deleting the underlying file.
            with self._force_load_images():
                yield dataset, info

    @contextlib.contextmanager
    def _force_load_images(self):
        open = PIL.Image.open

        def new(fp, *args, **kwargs):
            image = open(fp, *args, **kwargs)
            if isinstance(fp, (str, pathlib.Path)):
                image.load()
            return image

        with unittest.mock.patch("PIL.Image.open", new=new):
            yield


class VideoDatasetTestCase(DatasetTestCase):
    """Abstract base class for video dataset testcases.

Philip Meier's avatar
Philip Meier committed
651
    - Overwrites the 'FEATURE_TYPES' class attribute to expect two :class:`torch.Tensor` s for the video and audio as
652
      well as an integer label.
Philip Meier's avatar
Philip Meier committed
653
654
655
656
    - Overwrites the 'REQUIRED_PACKAGES' class attribute to require PyAV (``av``).
    - Adds the 'DEFAULT_FRAMES_PER_CLIP' class attribute. If no 'frames_per_clip' is provided by 'inject_fake_data()'
        and it is the last parameter without a default value in the dataset constructor, the value of the
        'DEFAULT_FRAMES_PER_CLIP' class attribute is appended to the output.
657
658
659
660
661
    """

    FEATURE_TYPES = (torch.Tensor, torch.Tensor, int)
    REQUIRED_PACKAGES = ("av",)

Philip Meier's avatar
Philip Meier committed
662
663
664
665
    DEFAULT_FRAMES_PER_CLIP = 1

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
666
        self.dataset_args = self._set_default_frames_per_clip(self.dataset_args)
Philip Meier's avatar
Philip Meier committed
667
668
669

    def _set_default_frames_per_clip(self, inject_fake_data):
        argspec = inspect.getfullargspec(self.DATASET_CLASS.__init__)
670
        args_without_default = argspec.args[1 : (-len(argspec.defaults) if argspec.defaults else None)]
Philip Meier's avatar
Philip Meier committed
671
672
673
674
        frames_per_clip_last = args_without_default[-1] == "frames_per_clip"

        @functools.wraps(inject_fake_data)
        def wrapper(tmpdir, config):
675
676
677
678
679
            args = inject_fake_data(tmpdir, config)
            if frames_per_clip_last and len(args) == len(args_without_default) - 1:
                args = (*args, self.DEFAULT_FRAMES_PER_CLIP)

            return args
Philip Meier's avatar
Philip Meier committed
680
681
682

        return wrapper

683
684
685
686
687
688
689
690
691
    @test_all_configs
    def test_transforms_v2_wrapper(self, config):
        # `output_format == "THWC"` is not supported by the wrapper. Thus, we skip the `config` if it is set explicitly
        # or use the supported `"TCHW"`
        if config.setdefault("output_format", "TCHW") == "THWC":
            return

        super().test_transforms_v2_wrapper.__wrapped__(self, config)

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

def create_image_or_video_tensor(size: Sequence[int]) -> torch.Tensor:
    r"""Create a random uint8 tensor.

    Args:
        size (Sequence[int]): Size of the tensor.
    """
    return torch.randint(0, 256, size, dtype=torch.uint8)


def create_image_file(
    root: Union[pathlib.Path, str], name: Union[pathlib.Path, str], size: Union[Sequence[int], int] = 10, **kwargs: Any
) -> pathlib.Path:
    """Create an image file from random data.

    Args:
        root (Union[str, pathlib.Path]): Root directory the image file will be placed in.
        name (Union[str, pathlib.Path]): Name of the image file.
        size (Union[Sequence[int], int]): Size of the image that represents the ``(num_channels, height, width)``. If
            scalar, the value is used for the height and width. If not provided, three channels are assumed.
        kwargs (Any): Additional parameters passed to :meth:`PIL.Image.Image.save`.

    Returns:
        pathlib.Path: Path to the created image file.
    """
    if isinstance(size, int):
        size = (size, size)
    if len(size) == 2:
        size = (3, *size)
    if len(size) != 3:
        raise UsageError(
            f"The 'size' argument should either be an int or a sequence of length 2 or 3. Got {len(size)} instead"
        )

    image = create_image_or_video_tensor(size)
    file = pathlib.Path(root) / name
728
729
730
731
732
733
734

    # torch (num_channels x height x width) -> PIL (width x height x num_channels)
    image = image.permute(2, 1, 0)
    # For grayscale images PIL doesn't use a channel dimension
    if image.shape[2] == 1:
        image = torch.squeeze(image, 2)
    PIL.Image.fromarray(image.numpy()).save(file, **kwargs)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    return file


def create_image_folder(
    root: Union[pathlib.Path, str],
    name: Union[pathlib.Path, str],
    file_name_fn: Callable[[int], str],
    num_examples: int,
    size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
    **kwargs: Any,
) -> List[pathlib.Path]:
    """Create a folder of random images.

    Args:
        root (Union[str, pathlib.Path]): Root directory the image folder will be placed in.
        name (Union[str, pathlib.Path]): Name of the image folder.
        file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
        num_examples (int): Number of images to create.
        size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the images. If
            callable, will be called with the index of the corresponding file. If omitted, a random height and width
            between 3 and 10 pixels is selected on a per-image basis.
        kwargs (Any): Additional parameters passed to :func:`create_image_file`.

    Returns:
        List[pathlib.Path]: Paths to all created image files.

    .. seealso::

        - :func:`create_image_file`
    """
    if size is None:

        def size(idx: int) -> Tuple[int, int, int]:
            num_channels = 3
            height, width = torch.randint(3, 11, size=(2,), dtype=torch.int).tolist()
            return (num_channels, height, width)

    root = pathlib.Path(root) / name
773
    os.makedirs(root, exist_ok=True)
774
775
776
777
778
779
780

    return [
        create_image_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
        for idx in range(num_examples)
    ]


781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
def shape_test_for_stereo(
    left: PIL.Image.Image,
    right: PIL.Image.Image,
    disparity: Optional[np.ndarray] = None,
    valid_mask: Optional[np.ndarray] = None,
):
    left_dims = get_dimensions(left)
    right_dims = get_dimensions(right)
    c, h, w = left_dims
    # check that left and right are the same size
    assert left_dims == right_dims
    assert c == 3

    # check that the disparity has the same spatial dimensions
    # as the input
    if disparity is not None:
        assert disparity.ndim == 3
        assert disparity.shape == (1, h, w)

    if valid_mask is not None:
        # check that valid mask is the same size as the disparity
        _, dh, dw = disparity.shape
        mh, mw = valid_mask.shape
        assert dh == mh
        assert dw == mw


808
809
810
811
812
813
814
815
@requires_lazy_imports("av")
def create_video_file(
    root: Union[pathlib.Path, str],
    name: Union[pathlib.Path, str],
    size: Union[Sequence[int], int] = (1, 3, 10, 10),
    fps: float = 25,
    **kwargs: Any,
) -> pathlib.Path:
816
    """Create a video file from random data.
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862

    Args:
        root (Union[str, pathlib.Path]): Root directory the video file will be placed in.
        name (Union[str, pathlib.Path]): Name of the video file.
        size (Union[Sequence[int], int]): Size of the video that represents the
            ``(num_frames, num_channels, height, width)``. If scalar, the value is used for the height and width.
            If not provided, ``num_frames=1`` and ``num_channels=3`` are assumed.
        fps (float): Frame rate in frames per second.
        kwargs (Any): Additional parameters passed to :func:`torchvision.io.write_video`.

    Returns:
        pathlib.Path: Path to the created image file.

    Raises:
        UsageError: If PyAV is not available.
    """
    if isinstance(size, int):
        size = (size, size)
    if len(size) == 2:
        size = (3, *size)
    if len(size) == 3:
        size = (1, *size)
    if len(size) != 4:
        raise UsageError(
            f"The 'size' argument should either be an int or a sequence of length 2, 3, or 4. Got {len(size)} instead"
        )

    video = create_image_or_video_tensor(size)
    file = pathlib.Path(root) / name
    torchvision.io.write_video(str(file), video.permute(0, 2, 3, 1), fps, **kwargs)
    return file


@requires_lazy_imports("av")
def create_video_folder(
    root: Union[str, pathlib.Path],
    name: Union[str, pathlib.Path],
    file_name_fn: Callable[[int], str],
    num_examples: int,
    size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
    fps=25,
    **kwargs,
) -> List[pathlib.Path]:
    """Create a folder of random videos.

    Args:
863
864
        root (Union[str, pathlib.Path]): Root directory the video folder will be placed in.
        name (Union[str, pathlib.Path]): Name of the video folder.
865
        file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
866
        num_examples (int): Number of videos to create.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the videos. If
            callable, will be called with the index of the corresponding file. If omitted, a random even height and
            width between 4 and 10 pixels is selected on a per-video basis.
        fps (float): Frame rate in frames per second.
        kwargs (Any): Additional parameters passed to :func:`create_video_file`.

    Returns:
        List[pathlib.Path]: Paths to all created video files.

    Raises:
        UsageError: If PyAV is not available.

    .. seealso::

        - :func:`create_video_file`
    """
    if size is None:

        def size(idx):
            num_frames = 1
            num_channels = 3
            # The 'libx264' video codec, which is the default of torchvision.io.write_video, requires the height and
            # width of the video to be divisible by 2.
            height, width = (torch.randint(2, 6, size=(2,), dtype=torch.int) * 2).tolist()
            return (num_frames, num_channels, height, width)

    root = pathlib.Path(root) / name
894
    os.makedirs(root, exist_ok=True)
895
896

    return [
897
        create_video_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
898
899
        for idx in range(num_examples)
    ]
900
901


902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
def _split_files_or_dirs(root, *files_or_dirs):
    files = set()
    dirs = set()
    for file_or_dir in files_or_dirs:
        path = pathlib.Path(file_or_dir)
        if not path.is_absolute():
            path = root / path
        if path.is_file():
            files.add(path)
        else:
            dirs.add(path)
            for sub_file_or_dir in path.glob("**/*"):
                if sub_file_or_dir.is_file():
                    files.add(sub_file_or_dir)
                else:
                    dirs.add(sub_file_or_dir)

    if root in dirs:
        dirs.remove(root)

    return files, dirs


def _make_archive(root, name, *files_or_dirs, opener, adder, remove=True):
    archive = pathlib.Path(root) / name
Philip Meier's avatar
Philip Meier committed
927
    if not files_or_dirs:
928
929
930
931
932
933
934
        # We need to invoke `Path.with_suffix("")`, since call only applies to the last suffix if multiple suffixes are
        # present. For example, `pathlib.Path("foo.tar.gz").with_suffix("")` results in `foo.tar`.
        file_or_dir = archive
        for _ in range(len(archive.suffixes)):
            file_or_dir = file_or_dir.with_suffix("")
        if file_or_dir.exists():
            files_or_dirs = (file_or_dir,)
Philip Meier's avatar
Philip Meier committed
935
936
937
        else:
            raise ValueError("No file or dir provided.")

938
939
940
    files, dirs = _split_files_or_dirs(root, *files_or_dirs)

    with opener(archive) as fh:
941
        for file in sorted(files):
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
            adder(fh, file, file.relative_to(root))

    if remove:
        for file in files:
            os.remove(file)
        for dir in dirs:
            shutil.rmtree(dir, ignore_errors=True)

    return archive


def make_tar(root, name, *files_or_dirs, remove=True, compression=None):
    # TODO: detect compression from name
    return _make_archive(
        root,
        name,
        *files_or_dirs,
        opener=lambda archive: tarfile.open(archive, f"w:{compression}" if compression else "w"),
        adder=lambda fh, file, relative_file: fh.add(file, arcname=relative_file),
        remove=remove,
    )


def make_zip(root, name, *files_or_dirs, remove=True):
    return _make_archive(
        root,
        name,
        *files_or_dirs,
        opener=lambda archive: zipfile.ZipFile(archive, "w"),
        adder=lambda fh, file, relative_file: fh.write(file, arcname=relative_file),
        remove=remove,
    )


976
977
978
979
980
def create_random_string(length: int, *digits: str) -> str:
    """Create a random string.

    Args:
        length (int): Number of characters in the generated string.
981
        *digits (str): Characters to sample from. If omitted defaults to :attr:`string.ascii_lowercase`.
982
983
984
985
986
987
988
    """
    if not digits:
        digits = string.ascii_lowercase
    else:
        digits = "".join(itertools.chain(*digits))

    return "".join(random.choice(digits) for _ in range(length))
989
990


991
992
993
994
995
996
997
998
def make_fake_pfm_file(h, w, file_name):
    values = list(range(3 * h * w))
    # Note: we pack everything in little endian: -1.0, and "<"
    content = f"PF \n{w} {h} \n-1.0\n".encode() + struct.pack("<" + "f" * len(values), *values)
    with open(file_name, "wb") as f:
        f.write(content)


999
1000
def make_fake_flo_file(h, w, file_name):
    """Creates a fake flow file in .flo format."""
1001
1002
    # Everything needs to be in little Endian according to
    # https://vision.middlebury.edu/flow/code/flow-code/README.txt
1003
    values = list(range(2 * h * w))
1004
1005
1006
1007
1008
1009
    content = (
        struct.pack("<4c", *(c.encode() for c in "PIEH"))
        + struct.pack("<i", w)
        + struct.pack("<i", h)
        + struct.pack("<" + "f" * len(values), *values)
    )
1010
1011
    with open(file_name, "wb") as f:
        f.write(content)