datasets_utils.py 32.5 KB
Newer Older
1
2
3
4
5
6
7
8
import collections.abc
import contextlib
import functools
import importlib
import inspect
import itertools
import os
import pathlib
9
10
import random
import string
11
12
import unittest
import unittest.mock
13
from collections import defaultdict
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union

import PIL
import PIL.Image

import torch
import torchvision.datasets
import torchvision.io

from common_utils import get_tmp_dir, disable_console_output


__all__ = [
    "UsageError",
    "lazy_importer",
    "test_all_configs",
    "DatasetTestCase",
    "ImageDatasetTestCase",
    "VideoDatasetTestCase",
    "create_image_or_video_tensor",
    "create_image_file",
    "create_image_folder",
    "create_video_file",
    "create_video_folder",
38
    "create_random_string",
39
40
41
]


42
class UsageError(Exception):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    """Should be raised in case an error happens in the setup rather than the test."""


class LazyImporter:
    r"""Lazy importer for additional dependicies.

    Some datasets require additional packages that are no direct dependencies of torchvision. Instances of this class
    provide modules listed in MODULES as attributes. They are only imported when accessed.

    """
    MODULES = (
        "av",
        "lmdb",
        "pycocotools",
        "requests",
        "scipy.io",
Philip Meier's avatar
Philip Meier committed
59
        "scipy.sparse",
60
61
62
    )

    def __init__(self):
63
        modules = defaultdict(list)
64
        for module in self.MODULES:
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
            module, *submodules = module.split(".", 1)
            if submodules:
                modules[module].append(submodules[0])
            else:
                # This introduces the module so that it is known when we later iterate over the dictionary.
                modules.__missing__(module)

        for module, submodules in modules.items():
            # We need the quirky 'module=module' and submodules=submodules arguments to the lambda since otherwise the
            # lookup for these would happen at runtime rather than at definition. Thus, without it, every property
            # would try to import the last item in 'modules'
            setattr(
                type(self),
                module,
                property(lambda self, module=module, submodules=submodules: LazyImporter._import(module, submodules)),
            )
81
82

    @staticmethod
83
    def _import(package, subpackages):
84
        try:
85
            module = importlib.import_module(package)
86
87
        except ImportError as error:
            raise UsageError(
88
89
                f"Failed to import module '{package}'. "
                f"This probably means that the current test case needs '{package}' installed, "
90
                f"but it is not a dependency of torchvision. "
91
                f"You need to install it manually, for example 'pip install {package}'."
92
93
            ) from error

94
95
96
97
98
        for name in subpackages:
            importlib.import_module(f".{name}", package=package)

        return module

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

lazy_importer = LazyImporter()


def requires_lazy_imports(*modules):
    def outer_wrapper(fn):
        @functools.wraps(fn)
        def inner_wrapper(*args, **kwargs):
            for module in modules:
                getattr(lazy_importer, module.replace(".", "_"))
            return fn(*args, **kwargs)

        return inner_wrapper

    return outer_wrapper


def test_all_configs(test):
    """Decorator to run test against all configurations.

119
120
121
122
    Add this as decorator to an arbitrary test to run it against all configurations. This includes
    :attr:`DatasetTestCase.DEFAULT_CONFIG` and :attr:`DatasetTestCase.ADDITIONAL_CONFIGS`.

    The current configuration is provided as the first parameter for the test:
123
124
125

    .. code-block::

126
        @test_all_configs()
127
128
        def test_foo(self, config):
            pass
129
130
131
132
133

    .. note::

        This will try to remove duplicate configurations. During this process it will not not preserve a potential
        ordering of the configurations or an inner ordering of a configuration.
134
135
    """

136
137
138
139
140
141
142
143
    def maybe_remove_duplicates(configs):
        try:
            return [dict(config_) for config_ in set(tuple(sorted(config.items())) for config in configs)]
        except TypeError:
            # A TypeError will be raised if a value of any config is not hashable, e.g. a list. In that case duplicate
            # removal would be a lot more elaborate and we simply bail out.
            return configs

144
145
    @functools.wraps(test)
    def wrapper(self):
146
147
148
149
150
151
152
153
154
155
156
157
        configs = []
        if self.DEFAULT_CONFIG is not None:
            configs.append(self.DEFAULT_CONFIG)
        if self.ADDITIONAL_CONFIGS is not None:
            configs.extend(self.ADDITIONAL_CONFIGS)

        if not configs:
            configs = [self._KWARG_DEFAULTS.copy()]
        else:
            configs = maybe_remove_duplicates(configs)

        for config in configs:
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            with self.subTest(**config):
                test(self, config)

    return wrapper


def combinations_grid(**kwargs):
    """Creates a grid of input combinations.

    Each element in the returned sequence is a dictionary containing one possible combination as values.

    Example:
        >>> combinations_grid(foo=("bar", "baz"), spam=("eggs", "ham"))
        [
            {'foo': 'bar', 'spam': 'eggs'},
            {'foo': 'bar', 'spam': 'ham'},
            {'foo': 'baz', 'spam': 'eggs'},
            {'foo': 'baz', 'spam': 'ham'}
        ]
    """
    return [dict(zip(kwargs.keys(), values)) for values in itertools.product(*kwargs.values())]


class DatasetTestCase(unittest.TestCase):
    """Abstract base class for all dataset testcases.

    You have to overwrite the following class attributes:

        - DATASET_CLASS (torchvision.datasets.VisionDataset): Class of dataset to be tested.
        - FEATURE_TYPES (Sequence[Any]): Types of the elements returned by index access of the dataset. Instead of
            providing these manually, you can instead subclass ``ImageDatasetTestCase`` or ``VideoDatasetTestCase```to
189
190
            get a reasonable default, that should work for most cases. Each entry of the sequence may be a tuple,
            to indicate multiple possible values.
191
192
193

    Optionally, you can overwrite the following class attributes:

194
195
196
197
198
199
200
        - DEFAULT_CONFIG (Dict[str, Any]): Config that will be used by default. If omitted, this defaults to all
            keyword arguments of the dataset minus ``transform``, ``target_transform``, ``transforms``, and
            ``download``. Overwrite this if you want to use a default value for a parameter for which the dataset does
            not provide one.
        - ADDITIONAL_CONFIGS (Sequence[Dict[str, Any]]): Additional configs that should be tested. Each dictionary can
            contain an arbitrary combination of dataset parameters that are **not** ``transform``, ``target_transform``,
            ``transforms``, or ``download``.
201
202
203
204
205
206
207
208
209
210
        - REQUIRED_PACKAGES (Iterable[str]): Additional dependencies to use the dataset. If these packages are not
            available, the tests are skipped.

    Additionally, you need to overwrite the ``inject_fake_data()`` method that provides the data that the tests rely on.
    The fake data should resemble the original data as close as necessary, while containing only few examples. During
    the creation of the dataset check-, download-, and extract-functions from ``torchvision.datasets.utils`` are
    disabled.

    Without further configuration, the testcase will test if

211
212
    1. the dataset raises a :class:`FileNotFoundError` or a :class:`RuntimeError` if the data files are not found or
       corrupted,
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    2. the dataset inherits from `torchvision.datasets.VisionDataset`,
    3. the dataset can be turned into a string,
    4. the feature types of a returned example matches ``FEATURE_TYPES``,
    5. the number of examples matches the injected fake data, and
    6. the dataset calls ``transform``, ``target_transform``, or ``transforms`` if available when accessing data.

    Case 3. to 6. are tested against all configurations in ``CONFIGS``.

    To add dataset-specific tests, create a new method that takes no arguments with ``test_`` as a name prefix:

    .. code-block::

        def test_foo(self):
            pass

    If you want to run the test against all configs, add the ``@test_all_configs`` decorator to the definition and
    accept a single argument:

    .. code-block::

        @test_all_configs
        def test_bar(self, config):
            pass

    Within the test you can use the ``create_dataset()`` method that yields the dataset as well as additional
    information provided by the ``ìnject_fake_data()`` method:

    .. code-block::

        def test_baz(self):
            with self.create_dataset() as (dataset, info):
                pass
    """

    DATASET_CLASS = None
    FEATURE_TYPES = None

250
251
    DEFAULT_CONFIG = None
    ADDITIONAL_CONFIGS = None
252
253
    REQUIRED_PACKAGES = None

254
    # These keyword arguments are checked by test_transforms in case they are available in DATASET_CLASS.
255
256
257
258
259
    _TRANSFORM_KWARGS = {
        "transform",
        "target_transform",
        "transforms",
    }
260
    # These keyword arguments get a 'special' treatment and should not be set in DEFAULT_CONFIG or ADDITIONAL_CONFIGS.
261
262
263
264
    _SPECIAL_KWARGS = {
        *_TRANSFORM_KWARGS,
        "download",
    }
265
266
267
268
269
270
271

    # These fields are populated during setupClass() within _populate_private_class_attributes()

    # This will be a dictionary containing all keyword arguments with their respective default values extracted from
    # the dataset constructor.
    _KWARG_DEFAULTS = None
    # This will be a set of all _SPECIAL_KWARGS that the dataset constructor takes.
272
273
    _HAS_SPECIAL_KWARG = None

274
    # These functions are disabled during dataset creation in create_dataset().
275
276
277
278
279
280
281
282
283
284
285
    _CHECK_FUNCTIONS = {
        "check_md5",
        "check_integrity",
    }
    _DOWNLOAD_EXTRACT_FUNCTIONS = {
        "download_url",
        "download_file_from_google_drive",
        "extract_archive",
        "download_and_extract_archive",
    }

286
287
288
289
290
291
292
293
294
295
296
    def dataset_args(self, tmpdir: str, config: Dict[str, Any]) -> Sequence[Any]:
        """Define positional arguments passed to the dataset.

        .. note::

            The default behavior is only valid if the dataset to be tested has ``root`` as the only required parameter.
            Otherwise you need to overwrite this method.

        Args:
            tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
                to be created and in turn also for the fake data injected here.
297
298
            config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
                fields for all dataset parameters with default values.
299
300
301
302
303
304
305

        Returns:
            (Tuple[str]): ``tmpdir`` which corresponds to ``root`` for most datasets.
        """
        return (tmpdir,)

    def inject_fake_data(self, tmpdir: str, config: Dict[str, Any]) -> Union[int, Dict[str, Any]]:
306
307
        """Inject fake data for dataset into a temporary directory.

308
309
310
311
        During the creation of the dataset the download and extract logic is disabled. Thus, the fake data injected
        here needs to resemble the raw data, i.e. the state of the dataset directly after the files are downloaded and
        potentially extracted.

312
313
314
        Args:
            tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
                to be created and in turn also for the fake data injected here.
315
316
            config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
                fields for all dataset parameters with default values.
317
318
319

        Needs to return one of the following:

320
            1. (int): Number of examples in the dataset to be created, or
321
            2. (Dict[str, Any]): Additional information about the injected fake data. Must contain the field
322
                ``"num_examples"`` that corresponds to the number of examples in the dataset to be created.
323
324
325
326
327
328
329
330
        """
        raise NotImplementedError("You need to provide fake data in order for the tests to run.")

    @contextlib.contextmanager
    def create_dataset(
        self,
        config: Optional[Dict[str, Any]] = None,
        inject_fake_data: bool = True,
331
        patch_checks: Optional[bool] = None,
332
333
334
335
        **kwargs: Any,
    ) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
        r"""Create the dataset in a temporary directory.

336
337
338
339
340
341
342
343
        The configuration passed to the dataset is populated to contain at least all parameters with default values.
        For this the following order of precedence is used:

        1. Parameters in :attr:`kwargs`.
        2. Configuration in :attr:`config`.
        3. Configuration in :attr:`~DatasetTestCase.DEFAULT_CONFIG`.
        4. Default parameters of the dataset.

344
        Args:
345
            config (Optional[Dict[str, Any]]): Configuration that will be used to create the dataset.
346
347
            inject_fake_data (bool): If ``True`` (default) inject the fake data with :meth:`.inject_fake_data` before
                creating the dataset.
348
349
            patch_checks (Optional[bool]): If ``True`` disable integrity check logic while creating the dataset. If
                omitted defaults to the same value as ``inject_fake_data``.
350
351
352
353
354
355
356
357
            **kwargs (Any): Additional parameters passed to the dataset. These parameters take precedence in case they
                overlap with ``config``.

        Yields:
            dataset (torchvision.dataset.VisionDataset): Dataset.
            info (Dict[str, Any]): Additional information about the injected fake data. See :meth:`.inject_fake_data`
                for details.
        """
358
359
        if patch_checks is None:
            patch_checks = inject_fake_data
360
361

        special_kwargs, other_kwargs = self._split_kwargs(kwargs)
362
363
364
365
366
367
368
369
370

        complete_config = self._KWARG_DEFAULTS.copy()
        if self.DEFAULT_CONFIG:
            complete_config.update(self.DEFAULT_CONFIG)
        if config:
            complete_config.update(config)
        if other_kwargs:
            complete_config.update(other_kwargs)

371
372
        if "download" in self._HAS_SPECIAL_KWARG and special_kwargs.get("download", False):
            # override download param to False param if its default is truthy
373
            special_kwargs["download"] = False
374

375
376
377
        patchers = self._patch_download_extract()
        if patch_checks:
            patchers.update(self._patch_checks())
378
379

        with get_tmp_dir() as tmpdir:
380
381
            args = self.dataset_args(tmpdir, complete_config)
            info = self._inject_fake_data(tmpdir, complete_config) if inject_fake_data else None
382

383
            with self._maybe_apply_patches(patchers), disable_console_output():
384
                dataset = self.DATASET_CLASS(*args, **complete_config, **special_kwargs)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

            yield dataset, info

    @classmethod
    def setUpClass(cls):
        cls._verify_required_public_class_attributes()
        cls._populate_private_class_attributes()
        cls._process_optional_public_class_attributes()
        super().setUpClass()

    @classmethod
    def _verify_required_public_class_attributes(cls):
        if cls.DATASET_CLASS is None:
            raise UsageError(
                "The class attribute 'DATASET_CLASS' needs to be overwritten. "
                "It should contain the class of the dataset to be tested."
            )
        if cls.FEATURE_TYPES is None:
            raise UsageError(
                "The class attribute 'FEATURE_TYPES' needs to be overwritten. "
                "It should contain a sequence of types that the dataset returns when accessed by index."
            )

    @classmethod
    def _populate_private_class_attributes(cls):
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        defaults = []
        for cls_ in cls.DATASET_CLASS.__mro__:
            if cls_ is torchvision.datasets.VisionDataset:
                break

            argspec = inspect.getfullargspec(cls_.__init__)

            if not argspec.defaults:
                continue

            defaults.append(
                {kwarg: default for kwarg, default in zip(argspec.args[-len(argspec.defaults):], argspec.defaults)}
            )

            if not argspec.varkw:
                break

        kwarg_defaults = dict()
        for config in reversed(defaults):
            kwarg_defaults.update(config)
430

431
432
433
434
        has_special_kwargs = set()
        for name in cls._SPECIAL_KWARGS:
            if name not in kwarg_defaults:
                continue
435

436
437
438
439
440
            del kwarg_defaults[name]
            has_special_kwargs.add(name)

        cls._KWARG_DEFAULTS = kwarg_defaults
        cls._HAS_SPECIAL_KWARG = has_special_kwargs
441
442
443

    @classmethod
    def _process_optional_public_class_attributes(cls):
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        def check_config(config, name):
            special_kwargs = tuple(f"'{name}'" for name in cls._SPECIAL_KWARGS if name in config)
            if special_kwargs:
                raise UsageError(
                    f"{name} contains a value for the parameter(s) {', '.join(special_kwargs)}. "
                    f"These are handled separately by the test case and should not be set here. "
                    f"If you need to test some custom behavior regarding these parameters, "
                    f"you need to write a custom test (*not* test case), e.g. test_custom_transform()."
                )

        if cls.DEFAULT_CONFIG is not None:
            check_config(cls.DEFAULT_CONFIG, "DEFAULT_CONFIG")

        if cls.ADDITIONAL_CONFIGS is not None:
            for idx, config in enumerate(cls.ADDITIONAL_CONFIGS):
                check_config(config, f"CONFIGS[{idx}]")

        if cls.REQUIRED_PACKAGES:
            missing_pkgs = []
            for pkg in cls.REQUIRED_PACKAGES:
                try:
465
                    importlib.import_module(pkg)
466
467
468
469
                except ImportError:
                    missing_pkgs.append(f"'{pkg}'")

            if missing_pkgs:
470
                raise unittest.SkipTest(
471
472
                    f"The package(s) {', '.join(missing_pkgs)} are required to load the dataset "
                    f"'{cls.DATASET_CLASS.__name__}', but are not installed."
473
474
475
476
477
478
479
                )

    def _split_kwargs(self, kwargs):
        special_kwargs = kwargs.copy()
        other_kwargs = {key: special_kwargs.pop(key) for key in set(special_kwargs.keys()) - self._SPECIAL_KWARGS}
        return special_kwargs, other_kwargs

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    def _inject_fake_data(self, tmpdir, config):
        info = self.inject_fake_data(tmpdir, config)
        if info is None:
            raise UsageError(
                "The method 'inject_fake_data' needs to return at least an integer indicating the number of "
                "examples for the current configuration."
            )
        elif isinstance(info, int):
            info = dict(num_examples=info)
        elif not isinstance(info, dict):
            raise UsageError(
                f"The additional information returned by the method 'inject_fake_data' must be either an "
                f"integer indicating the number of examples for the current configuration or a dictionary with "
                f"the same content. Got {type(info)} instead."
            )
        elif "num_examples" not in info:
            raise UsageError(
                "The information dictionary returned by the method 'inject_fake_data' must contain a "
                "'num_examples' field that holds the number of examples for the current configuration."
            )
        return info

    def _patch_download_extract(self):
        module = inspect.getmodule(self.DATASET_CLASS).__name__
        return {unittest.mock.patch(f"{module}.{function}") for function in self._DOWNLOAD_EXTRACT_FUNCTIONS}
505

506
    def _patch_checks(self):
507
        module = inspect.getmodule(self.DATASET_CLASS).__name__
508
509
510
511
        return {unittest.mock.patch(f"{module}.{function}", return_value=True) for function in self._CHECK_FUNCTIONS}

    @contextlib.contextmanager
    def _maybe_apply_patches(self, patchers):
512
513
        with contextlib.ExitStack() as stack:
            mocks = {}
514
            for patcher in patchers:
515
                with contextlib.suppress(AttributeError):
516
517
                    mocks[patcher.target] = stack.enter_context(patcher)
            yield mocks
518

519
520
    def test_not_found_or_corrupted(self):
        with self.assertRaises((FileNotFoundError, RuntimeError)):
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            with self.create_dataset(inject_fake_data=False):
                pass

    def test_smoke(self):
        with self.create_dataset() as (dataset, _):
            self.assertIsInstance(dataset, torchvision.datasets.VisionDataset)

    @test_all_configs
    def test_str_smoke(self, config):
        with self.create_dataset(config) as (dataset, _):
            self.assertIsInstance(str(dataset), str)

    @test_all_configs
    def test_feature_types(self, config):
        with self.create_dataset(config) as (dataset, _):
            example = dataset[0]

538
539
540
541
542
543
544
545
546
547
548
            if len(self.FEATURE_TYPES) > 1:
                actual = len(example)
                expected = len(self.FEATURE_TYPES)
                self.assertEqual(
                    actual,
                    expected,
                    f"The number of the returned features does not match the the number of elements in FEATURE_TYPES: "
                    f"{actual} != {expected}",
                )
            else:
                example = (example,)
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

            for idx, (feature, expected_feature_type) in enumerate(zip(example, self.FEATURE_TYPES)):
                with self.subTest(idx=idx):
                    self.assertIsInstance(feature, expected_feature_type)

    @test_all_configs
    def test_num_examples(self, config):
        with self.create_dataset(config) as (dataset, info):
            self.assertEqual(len(dataset), info["num_examples"])

    @test_all_configs
    def test_transforms(self, config):
        mock = unittest.mock.Mock(wraps=lambda *args: args[0] if len(args) == 1 else args)
        for kwarg in self._TRANSFORM_KWARGS:
            if kwarg not in self._HAS_SPECIAL_KWARG:
                continue

            mock.reset_mock()

            with self.subTest(kwarg=kwarg):
                with self.create_dataset(config, **{kwarg: mock}) as (dataset, _):
                    dataset[0]

                mock.assert_called()


class ImageDatasetTestCase(DatasetTestCase):
    """Abstract base class for image dataset testcases.

    - Overwrites the FEATURE_TYPES class attribute to expect a :class:`PIL.Image.Image` and an integer label.
    """

    FEATURE_TYPES = (PIL.Image.Image, int)

    @contextlib.contextmanager
    def create_dataset(
        self,
        config: Optional[Dict[str, Any]] = None,
        inject_fake_data: bool = True,
588
        patch_checks: Optional[bool] = None,
589
590
591
592
593
        **kwargs: Any,
    ) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
        with super().create_dataset(
            config=config,
            inject_fake_data=inject_fake_data,
594
            patch_checks=patch_checks,
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
            **kwargs,
        ) as (dataset, info):
            # PIL.Image.open() only loads the image meta data upfront and keeps the file open until the first access
            # to the pixel data occurs. Trying to delete such a file results in an PermissionError on Windows. Thus, we
            # force-load opened images.
            # This problem only occurs during testing since some tests, e.g. DatasetTestCase.test_feature_types open an
            # image, but never use the underlying data. During normal operation it is reasonable to assume that the
            # user wants to work with the image he just opened rather than deleting the underlying file.
            with self._force_load_images():
                yield dataset, info

    @contextlib.contextmanager
    def _force_load_images(self):
        open = PIL.Image.open

        def new(fp, *args, **kwargs):
            image = open(fp, *args, **kwargs)
            if isinstance(fp, (str, pathlib.Path)):
                image.load()
            return image

        with unittest.mock.patch("PIL.Image.open", new=new):
            yield


class VideoDatasetTestCase(DatasetTestCase):
    """Abstract base class for video dataset testcases.

Philip Meier's avatar
Philip Meier committed
623
    - Overwrites the 'FEATURE_TYPES' class attribute to expect two :class:`torch.Tensor` s for the video and audio as
624
      well as an integer label.
Philip Meier's avatar
Philip Meier committed
625
626
627
628
    - Overwrites the 'REQUIRED_PACKAGES' class attribute to require PyAV (``av``).
    - Adds the 'DEFAULT_FRAMES_PER_CLIP' class attribute. If no 'frames_per_clip' is provided by 'inject_fake_data()'
        and it is the last parameter without a default value in the dataset constructor, the value of the
        'DEFAULT_FRAMES_PER_CLIP' class attribute is appended to the output.
629
630
631
632
633
    """

    FEATURE_TYPES = (torch.Tensor, torch.Tensor, int)
    REQUIRED_PACKAGES = ("av",)

Philip Meier's avatar
Philip Meier committed
634
635
636
637
    DEFAULT_FRAMES_PER_CLIP = 1

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
638
        self.dataset_args = self._set_default_frames_per_clip(self.dataset_args)
Philip Meier's avatar
Philip Meier committed
639
640
641
642
643
644
645
646

    def _set_default_frames_per_clip(self, inject_fake_data):
        argspec = inspect.getfullargspec(self.DATASET_CLASS.__init__)
        args_without_default = argspec.args[1:-len(argspec.defaults)]
        frames_per_clip_last = args_without_default[-1] == "frames_per_clip"

        @functools.wraps(inject_fake_data)
        def wrapper(tmpdir, config):
647
648
649
650
651
            args = inject_fake_data(tmpdir, config)
            if frames_per_clip_last and len(args) == len(args_without_default) - 1:
                args = (*args, self.DEFAULT_FRAMES_PER_CLIP)

            return args
Philip Meier's avatar
Philip Meier committed
652
653
654

        return wrapper

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

def create_image_or_video_tensor(size: Sequence[int]) -> torch.Tensor:
    r"""Create a random uint8 tensor.

    Args:
        size (Sequence[int]): Size of the tensor.
    """
    return torch.randint(0, 256, size, dtype=torch.uint8)


def create_image_file(
    root: Union[pathlib.Path, str], name: Union[pathlib.Path, str], size: Union[Sequence[int], int] = 10, **kwargs: Any
) -> pathlib.Path:
    """Create an image file from random data.

    Args:
        root (Union[str, pathlib.Path]): Root directory the image file will be placed in.
        name (Union[str, pathlib.Path]): Name of the image file.
        size (Union[Sequence[int], int]): Size of the image that represents the ``(num_channels, height, width)``. If
            scalar, the value is used for the height and width. If not provided, three channels are assumed.
        kwargs (Any): Additional parameters passed to :meth:`PIL.Image.Image.save`.

    Returns:
        pathlib.Path: Path to the created image file.
    """
    if isinstance(size, int):
        size = (size, size)
    if len(size) == 2:
        size = (3, *size)
    if len(size) != 3:
        raise UsageError(
            f"The 'size' argument should either be an int or a sequence of length 2 or 3. Got {len(size)} instead"
        )

    image = create_image_or_video_tensor(size)
    file = pathlib.Path(root) / name
691
692
693
694
695
696
697

    # torch (num_channels x height x width) -> PIL (width x height x num_channels)
    image = image.permute(2, 1, 0)
    # For grayscale images PIL doesn't use a channel dimension
    if image.shape[2] == 1:
        image = torch.squeeze(image, 2)
    PIL.Image.fromarray(image.numpy()).save(file, **kwargs)
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    return file


def create_image_folder(
    root: Union[pathlib.Path, str],
    name: Union[pathlib.Path, str],
    file_name_fn: Callable[[int], str],
    num_examples: int,
    size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
    **kwargs: Any,
) -> List[pathlib.Path]:
    """Create a folder of random images.

    Args:
        root (Union[str, pathlib.Path]): Root directory the image folder will be placed in.
        name (Union[str, pathlib.Path]): Name of the image folder.
        file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
        num_examples (int): Number of images to create.
        size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the images. If
            callable, will be called with the index of the corresponding file. If omitted, a random height and width
            between 3 and 10 pixels is selected on a per-image basis.
        kwargs (Any): Additional parameters passed to :func:`create_image_file`.

    Returns:
        List[pathlib.Path]: Paths to all created image files.

    .. seealso::

        - :func:`create_image_file`
    """
    if size is None:

        def size(idx: int) -> Tuple[int, int, int]:
            num_channels = 3
            height, width = torch.randint(3, 11, size=(2,), dtype=torch.int).tolist()
            return (num_channels, height, width)

    root = pathlib.Path(root) / name
736
    os.makedirs(root, exist_ok=True)
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

    return [
        create_image_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
        for idx in range(num_examples)
    ]


@requires_lazy_imports("av")
def create_video_file(
    root: Union[pathlib.Path, str],
    name: Union[pathlib.Path, str],
    size: Union[Sequence[int], int] = (1, 3, 10, 10),
    fps: float = 25,
    **kwargs: Any,
) -> pathlib.Path:
    """Create an video file from random data.

    Args:
        root (Union[str, pathlib.Path]): Root directory the video file will be placed in.
        name (Union[str, pathlib.Path]): Name of the video file.
        size (Union[Sequence[int], int]): Size of the video that represents the
            ``(num_frames, num_channels, height, width)``. If scalar, the value is used for the height and width.
            If not provided, ``num_frames=1`` and ``num_channels=3`` are assumed.
        fps (float): Frame rate in frames per second.
        kwargs (Any): Additional parameters passed to :func:`torchvision.io.write_video`.

    Returns:
        pathlib.Path: Path to the created image file.

    Raises:
        UsageError: If PyAV is not available.
    """
    if isinstance(size, int):
        size = (size, size)
    if len(size) == 2:
        size = (3, *size)
    if len(size) == 3:
        size = (1, *size)
    if len(size) != 4:
        raise UsageError(
            f"The 'size' argument should either be an int or a sequence of length 2, 3, or 4. Got {len(size)} instead"
        )

    video = create_image_or_video_tensor(size)
    file = pathlib.Path(root) / name
    torchvision.io.write_video(str(file), video.permute(0, 2, 3, 1), fps, **kwargs)
    return file


@requires_lazy_imports("av")
def create_video_folder(
    root: Union[str, pathlib.Path],
    name: Union[str, pathlib.Path],
    file_name_fn: Callable[[int], str],
    num_examples: int,
    size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
    fps=25,
    **kwargs,
) -> List[pathlib.Path]:
    """Create a folder of random videos.

    Args:
799
800
        root (Union[str, pathlib.Path]): Root directory the video folder will be placed in.
        name (Union[str, pathlib.Path]): Name of the video folder.
801
        file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
802
        num_examples (int): Number of videos to create.
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the videos. If
            callable, will be called with the index of the corresponding file. If omitted, a random even height and
            width between 4 and 10 pixels is selected on a per-video basis.
        fps (float): Frame rate in frames per second.
        kwargs (Any): Additional parameters passed to :func:`create_video_file`.

    Returns:
        List[pathlib.Path]: Paths to all created video files.

    Raises:
        UsageError: If PyAV is not available.

    .. seealso::

        - :func:`create_video_file`
    """
    if size is None:

        def size(idx):
            num_frames = 1
            num_channels = 3
            # The 'libx264' video codec, which is the default of torchvision.io.write_video, requires the height and
            # width of the video to be divisible by 2.
            height, width = (torch.randint(2, 6, size=(2,), dtype=torch.int) * 2).tolist()
            return (num_frames, num_channels, height, width)

    root = pathlib.Path(root) / name
830
    os.makedirs(root, exist_ok=True)
831
832

    return [
833
        create_video_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
834
835
        for idx in range(num_examples)
    ]
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850


def create_random_string(length: int, *digits: str) -> str:
    """Create a random string.

    Args:
        length (int): Number of characters in the generated string.
        *characters (str): Characters to sample from. If omitted defaults to :attr:`string.ascii_lowercase`.
    """
    if not digits:
        digits = string.ascii_lowercase
    else:
        digits = "".join(itertools.chain(*digits))

    return "".join(random.choice(digits) for _ in range(length))