test_video_reader.py 46.1 KB
Newer Older
1
import collections
2
import itertools
3
4
import math
import os
5
6
import pytest
from pytest import approx
7
8
9
from fractions import Fraction

import numpy as np
10
11
12
import torch
import torchvision.io as io
from numpy.random import randint
13
from torchvision import set_video_backend
14
from torchvision.io import _HAS_VIDEO_OPT
15
from common_utils import PY39_SKIP, assert_equal
16

17
18
19

try:
    import av
20

21
22
23
24
25
26
27
28
29
    # Do a version test too
    io.video._check_av_available()
except ImportError:
    av = None


VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")

CheckerConfig = [
30
    "duration",
31
32
33
34
35
36
37
    "video_fps",
    "audio_sample_rate",
    # We find for some videos (e.g. HMDB51 videos), the decoded audio frames and pts are
    # slightly different between TorchVision decoder and PyAv decoder. So omit it during check
    "check_aframes",
    "check_aframe_pts",
]
38
GroundTruth = collections.namedtuple("GroundTruth", " ".join(CheckerConfig))
39
40

all_check_config = GroundTruth(
41
    duration=0,
42
43
44
45
46
47
48
49
    video_fps=0,
    audio_sample_rate=0,
    check_aframes=True,
    check_aframe_pts=True,
)

test_videos = {
    "RATRACE_wave_f_nm_np1_fr_goo_37.avi": GroundTruth(
50
        duration=2.0,
51
52
53
54
55
56
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi": GroundTruth(
57
        duration=2.0,
58
59
60
61
62
63
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "TrumanShow_wave_f_nm_np1_fr_med_26.avi": GroundTruth(
64
        duration=2.0,
65
66
67
68
69
70
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g23_c01.avi": GroundTruth(
71
        duration=8.0,
72
73
74
75
76
77
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g24_c01.avi": GroundTruth(
78
        duration=8.0,
79
80
81
82
83
84
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "R6llTwEh07w.mp4": GroundTruth(
85
        duration=10.0,
86
87
88
89
90
91
92
        video_fps=30.0,
        audio_sample_rate=44100,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "SOX5yA1l24A.mp4": GroundTruth(
93
        duration=11.0,
94
95
96
97
98
99
100
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "WUzgd7C1pWA.mp4": GroundTruth(
101
        duration=11.0,
102
103
104
105
106
107
108
109
110
111
112
113
114
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
}


DecoderResult = collections.namedtuple(
    "DecoderResult", "vframes vframe_pts vtimebase aframes aframe_pts atimebase"
)

115
116
# av_seek_frame is imprecise so seek to a timestamp earlier by a margin
# The unit of margin is second
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
seek_frame_margin = 0.25


def _read_from_stream(
    container, start_pts, end_pts, stream, stream_name, buffer_size=4
):
    """
    Args:
        container: pyav container
        start_pts/end_pts: the starting/ending Presentation TimeStamp where
            frames are read
        stream: pyav stream
        stream_name: a dictionary of streams. For example, {"video": 0} means
            video stream at stream index 0
        buffer_size: pts of frames decoded by PyAv is not guaranteed to be in
            ascending order. We need to decode more frames even when we meet end
            pts
    """
    # seeking in the stream is imprecise. Thus, seek to an ealier PTS by a margin
    margin = 1
    seek_offset = max(start_pts - margin, 0)

    container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    frames = {}
    buffer_count = 0
    for frame in container.decode(**stream_name):
        if frame.pts < start_pts:
            continue
        if frame.pts <= end_pts:
            frames[frame.pts] = frame
        else:
            buffer_count += 1
            if buffer_count >= buffer_size:
                break
    result = [frames[pts] for pts in sorted(frames)]

    return result


def _get_timebase_by_av_module(full_path):
    container = av.open(full_path)
    video_time_base = container.streams.video[0].time_base
    if container.streams.audio:
        audio_time_base = container.streams.audio[0].time_base
    else:
        audio_time_base = None
    return video_time_base, audio_time_base


def _fraction_to_tensor(fraction):
    ret = torch.zeros([2], dtype=torch.int32)
    ret[0] = fraction.numerator
    ret[1] = fraction.denominator
    return ret


def _decode_frames_by_av_module(
    full_path,
    video_start_pts=0,
    video_end_pts=None,
    audio_start_pts=0,
    audio_end_pts=None,
):
    """
    Use PyAv to decode video frames. This provides a reference for our decoder
    to compare the decoding results.
    Input arguments:
        full_path: video file path
        video_start_pts/video_end_pts: the starting/ending Presentation TimeStamp where
            frames are read
    """
    if video_end_pts is None:
189
        video_end_pts = float("inf")
190
    if audio_end_pts is None:
191
        audio_end_pts = float("inf")
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    container = av.open(full_path)

    video_frames = []
    vtimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.video:
        video_frames = _read_from_stream(
            container,
            video_start_pts,
            video_end_pts,
            container.streams.video[0],
            {"video": 0},
        )
        # container.streams.video[0].average_rate is not a reliable estimator of
        # frame rate. It can be wrong for certain codec, such as VP80
        # So we do not return video fps here
        vtimebase = _fraction_to_tensor(container.streams.video[0].time_base)

    audio_frames = []
    atimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.audio:
        audio_frames = _read_from_stream(
            container,
            audio_start_pts,
            audio_end_pts,
            container.streams.audio[0],
            {"audio": 0},
        )
        atimebase = _fraction_to_tensor(container.streams.audio[0].time_base)

    container.close()
    vframes = [frame.to_rgb().to_ndarray() for frame in video_frames]
    vframes = torch.as_tensor(np.stack(vframes))

    vframe_pts = torch.tensor([frame.pts for frame in video_frames], dtype=torch.int64)

    aframes = [frame.to_ndarray() for frame in audio_frames]
    if aframes:
        aframes = np.transpose(np.concatenate(aframes, axis=1))
        aframes = torch.as_tensor(aframes)
    else:
        aframes = torch.empty((1, 0), dtype=torch.float32)

    aframe_pts = torch.tensor(
        [audio_frame.pts for audio_frame in audio_frames], dtype=torch.int64
    )

    return DecoderResult(
        vframes=vframes,
        vframe_pts=vframe_pts,
        vtimebase=vtimebase,
        aframes=aframes,
        aframe_pts=aframe_pts,
        atimebase=atimebase,
    )


def _pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return int(round_func(new_pts))


def _get_video_tensor(video_dir, video_file):
    """open a video file, and represent the video data by a PT tensor"""
    full_path = os.path.join(video_dir, video_file)

    assert os.path.exists(full_path), "File not found: %s" % full_path

    with open(full_path, "rb") as fp:
        video_tensor = torch.from_numpy(np.frombuffer(fp.read(), dtype=np.uint8))

    return full_path, video_tensor


272
273
274
@pytest.mark.skipif(av is None, reason="PyAV unavailable")
@pytest.mark.skipif(_HAS_VIDEO_OPT is False, reason="Didn't compile with ffmpeg")
class TestVideoReader:
275
276
277
    def check_separate_decoding_result(self, tv_result, config):
        """check the decoding results from TorchVision decoder
        """
278
279
280
281
        vframes, vframe_pts, vtimebase, vfps, vduration, \
            aframes, aframe_pts, atimebase, asample_rate, aduration = (
                tv_result
            )
282
283
284

        video_duration = vduration.item() * Fraction(
            vtimebase[0].item(), vtimebase[1].item()
285
        )
286
287
288
        assert video_duration == approx(config.duration, abs=0.5)

        assert vfps.item() == approx(config.video_fps, abs=0.5)
289
290

        if asample_rate.numel() > 0:
291
            assert asample_rate.item() == config.audio_sample_rate
292
293
294
            audio_duration = aduration.item() * Fraction(
                atimebase[0].item(), atimebase[1].item()
            )
295
            assert audio_duration == approx(config.duration, abs=0.5)
296

297
298
        # check if pts of video frames are sorted in ascending order
        for i in range(len(vframe_pts) - 1):
299
            assert vframe_pts[i] < vframe_pts[i + 1]
300
301
302
303

        if len(aframe_pts) > 1:
            # check if pts of audio frames are sorted in ascending order
            for i in range(len(aframe_pts) - 1):
304
                assert aframe_pts[i] < aframe_pts[i + 1]
305

306
307
308
309
310
    def check_probe_result(self, result, config):
        vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
        video_duration = vduration.item() * Fraction(
            vtimebase[0].item(), vtimebase[1].item()
        )
311
312
        assert video_duration == approx(config.duration, abs=0.5)
        assert vfps.item() == approx(config.video_fps, abs=0.5)
313
        if asample_rate.numel() > 0:
314
            assert asample_rate.item() == config.audio_sample_rate
315
316
317
            audio_duration = aduration.item() * Fraction(
                atimebase[0].item(), atimebase[1].item()
            )
318
            assert audio_duration == approx(config.duration, abs=0.5)
319

320
    def check_meta_result(self, result, config):
321
322
        assert result.video_duration == approx(config.duration, abs=0.5)
        assert result.video_fps == approx(config.video_fps, abs=0.5)
323
        if result.has_audio > 0:
324
325
            assert result.audio_sample_rate == config.audio_sample_rate
            assert result.audio_duration == approx(config.duration, abs=0.5)
326

327
328
329
330
331
332
333
334
335
    def compare_decoding_result(self, tv_result, ref_result, config=all_check_config):
        """
        Compare decoding results from two sources.
        Args:
            tv_result: decoding results from TorchVision decoder
            ref_result: reference decoding results which can be from either PyAv
                        decoder or TorchVision decoder with getPtsOnly = 1
            config: config of decoding results checker
        """
336
337
338
339
        vframes, vframe_pts, vtimebase, _vfps, _vduration, \
            aframes, aframe_pts, atimebase, _asample_rate, _aduration = (
                tv_result
            )
340
341
342
343
344
345
        if isinstance(ref_result, list):
            # the ref_result is from new video_reader decoder
            ref_result = DecoderResult(
                vframes=ref_result[0],
                vframe_pts=ref_result[1],
                vtimebase=ref_result[2],
346
347
348
                aframes=ref_result[5],
                aframe_pts=ref_result[6],
                atimebase=ref_result[7],
349
350
351
            )

        if vframes.numel() > 0 and ref_result.vframes.numel() > 0:
352
353
354
            mean_delta = torch.mean(
                torch.abs(vframes.float() - ref_result.vframes.float())
            )
355
            assert mean_delta == approx(0.0, abs=8.0)
356

357
358
359
        mean_delta = torch.mean(
            torch.abs(vframe_pts.float() - ref_result.vframe_pts.float())
        )
360
        assert mean_delta == approx(0.0, abs=1.0)
361

362
        assert_equal(vtimebase, ref_result.vtimebase)
363

364
365
366
367
368
        if (
            config.check_aframes
            and aframes.numel() > 0
            and ref_result.aframes.numel() > 0
        ):
369
370
            """Audio stream is available and audio frame is required to return
            from decoder"""
371
            assert_equal(aframes, ref_result.aframes)
372

373
374
375
376
377
        if (
            config.check_aframe_pts
            and aframe_pts.numel() > 0
            and ref_result.aframe_pts.numel() > 0
        ):
378
            """Audio stream is available"""
379
            assert_equal(aframe_pts, ref_result.aframe_pts)
380

381
            assert_equal(atimebase, ref_result.atimebase)
382
383

    def test_stress_test_read_video_from_file(self):
384
385
386
387
388
        pytest.skip(
            "This stress test will iteratively decode the same set of videos."
            "It helps to detect memory leak but it takes lots of time to run."
            "By default, it is disabled"
        )
389
390
        num_iter = 10000
        # video related
391
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
392
393
394
395
396
397
398
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

399
400
        for _i in range(num_iter):
            for test_video, _config in test_videos.items():
401
402
403
                full_path = os.path.join(VIDEO_DIR, test_video)

                # pass 1: decode all frames using new decoder
404
                torch.ops.video_reader.read_video_from_file(
405
406
407
408
409
410
411
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
412
                    max_dimension,
413
414
415
416
417
418
419
420
421
422
423
424
425
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

426
    @PY39_SKIP
427
428
429
430
431
    def test_read_video_from_file(self):
        """
        Test the case when decoder starts with a video file to decode frames.
        """
        # video related
432
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
452
                max_dimension,
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)
            # check results from TorchVision decoder
            self.check_separate_decoding_result(tv_result, config)
            # compare decoding results
            self.compare_decoding_result(tv_result, pyav_result, config)

472
    @PY39_SKIP
473
474
475
476
477
478
    def test_read_video_from_file_read_single_stream_only(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        only reads video stream and ignores audio stream
        """
        # video related
479
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            for readVideoStream, readAudioStream in [(1, 0), (0, 1)]:
                # decode all frames using new decoder
                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    readVideoStream,
                    width,
                    height,
                    min_dimension,
499
                    max_dimension,
500
501
502
503
504
505
506
507
508
509
510
511
512
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    readAudioStream,
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

513
514
515
516
                vframes, vframe_pts, vtimebase, vfps, vduration, \
                    aframes, aframe_pts, atimebase, asample_rate, aduration = (
                        tv_result
                    )
517

518
519
520
521
                assert (vframes.numel() > 0) is bool(readVideoStream)
                assert (vframe_pts.numel() > 0) is bool(readVideoStream)
                assert (vtimebase.numel() > 0) is bool(readVideoStream)
                assert (vfps.numel() > 0) is bool(readVideoStream)
522

523
524
525
                expect_audio_data = (
                    readAudioStream == 1 and config.audio_sample_rate is not None
                )
526
527
528
529
                assert (aframes.numel() > 0) is bool(expect_audio_data)
                assert (aframe_pts.numel() > 0) is bool(expect_audio_data)
                assert (atimebase.numel() > 0) is bool(expect_audio_data)
                assert (asample_rate.numel() > 0) is bool(expect_audio_data)
530
531
532
533
534
535
536

    def test_read_video_from_file_rescale_min_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
537
        width, height, min_dimension, max_dimension = 0, 0, 128, 0
538
539
540
541
542
543
544
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

545
        for test_video, _config in test_videos.items():
546
547
548
549
550
551
552
553
554
555
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
556
                max_dimension,
557
558
559
560
561
562
563
564
565
566
567
568
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
569
            assert min_dimension == min(tv_result[0].size(1), tv_result[0].size(2))
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    def test_read_video_from_file_rescale_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 0, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
609
            assert max_dimension == max(tv_result[0].size(1), tv_result[0].size(2))
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    def test_read_video_from_file_rescale_both_min_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 64, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
649
650
            assert min_dimension == min(tv_result[0].size(1), tv_result[0].size(2))
            assert max_dimension == max(tv_result[0].size(1), tv_result[0].size(2))
651

652
653
654
655
656
657
    def test_read_video_from_file_rescale_width(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video width is set.
        """
        # video related
658
        width, height, min_dimension, max_dimension = 256, 0, 0, 0
659
660
661
662
663
664
665
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

666
        for test_video, _config in test_videos.items():
667
668
669
670
671
672
673
674
675
676
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
677
                max_dimension,
678
679
680
681
682
683
684
685
686
687
688
689
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
690
            assert tv_result[0].size(2) == width
691
692
693
694
695
696
697

    def test_read_video_from_file_rescale_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video height is set.
        """
        # video related
698
        width, height, min_dimension, max_dimension = 0, 224, 0, 0
699
700
701
702
703
704
705
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

706
        for test_video, _config in test_videos.items():
707
708
709
710
711
712
713
714
715
716
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
717
                max_dimension,
718
719
720
721
722
723
724
725
726
727
728
729
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
730
            assert tv_result[0].size(1) == height
731
732
733
734
735
736
737

    def test_read_video_from_file_rescale_width_and_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        both video height and width are set.
        """
        # video related
738
        width, height, min_dimension, max_dimension = 320, 240, 0, 0
739
740
741
742
743
744
745
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

746
        for test_video, _config in test_videos.items():
747
748
749
750
751
752
753
754
755
756
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
757
                max_dimension,
758
759
760
761
762
763
764
765
766
767
768
769
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
770
771
            assert tv_result[0].size(1) == height
            assert tv_result[0].size(2) == width
772

773
    @PY39_SKIP
774
775
776
777
778
779
    def test_read_video_from_file_audio_resampling(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        audio waveform are resampled
        """

780
        for samples in [9600, 96000]:  # downsampling  # upsampling
781
            # video related
782
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
783
784
785
786
787
788
789
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            channels = 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1

790
            for test_video, _config in test_videos.items():
791
792
793
794
795
796
797
798
799
800
                full_path = os.path.join(VIDEO_DIR, test_video)

                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
801
                    max_dimension,
802
803
804
805
806
807
808
809
810
811
812
813
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )
814
815
816
817
                vframes, vframe_pts, vtimebase, vfps, vduration, \
                    aframes, aframe_pts, atimebase, asample_rate, aduration = (
                        tv_result
                    )
818
                if aframes.numel() > 0:
819
820
                    assert samples == asample_rate.item()
                    assert 1 == aframes.size(1)
821
                    # when audio stream is found
822
823
824
825
826
                    duration = (
                        float(aframe_pts[-1])
                        * float(atimebase[0])
                        / float(atimebase[1])
                    )
827
                    assert aframes.size(0) == approx(int(duration * asample_rate.item()), abs=0.1 * asample_rate.item())
828

829
    @PY39_SKIP
830
831
832
833
834
    def test_compare_read_video_from_memory_and_file(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
835
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result_memory = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
855
                max_dimension,
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.check_separate_decoding_result(tv_result_memory, config)
            # pass 2: decode all frames from file
            tv_result_file = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
878
                max_dimension,
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

            self.check_separate_decoding_result(tv_result_file, config)
            # finally, compare results decoded from memory and file
            self.compare_decoding_result(tv_result_memory, tv_result_file)

896
    @PY39_SKIP
897
898
899
900
901
    def test_read_video_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
902
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
922
                max_dimension,
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)

            self.check_separate_decoding_result(tv_result, config)
            self.compare_decoding_result(tv_result, pyav_result, config)

941
    @PY39_SKIP
942
943
944
945
946
947
948
    def test_read_video_from_memory_get_pts_only(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        Compare frame pts between decoding for pts only and full decoding
        for both pts and frame data
        """
        # video related
949
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
969
                max_dimension,
970
971
972
973
974
975
976
977
978
979
980
981
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
982
            assert abs(config.video_fps - tv_result[3].item()) < 0.01
983
984
985
986
987
988
989
990
991
992

            # pass 2: decode all frames to get PTS only using cpp decoder
            tv_result_pts_only = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                1,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
993
                max_dimension,
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

1007
1008
            assert not tv_result_pts_only[0].numel()
            assert not tv_result_pts_only[5].numel()
1009
1010
            self.compare_decoding_result(tv_result, tv_result_pts_only)

1011
    @PY39_SKIP
1012
1013
1014
1015
1016
1017
1018
1019
1020
    def test_read_video_in_range_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        In addition, decoder takes meaningful start- and end PTS as input, and decode
        frames within that interval
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            # video related
1021
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            samples, channels = 0, 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1
            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1037
                max_dimension,
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
1050
1051
1052
1053
            vframes, vframe_pts, vtimebase, vfps, vduration, \
                aframes, aframe_pts, atimebase, asample_rate, aduration = (
                    tv_result
                )
1054
            assert abs(config.video_fps - vfps.item()) < 0.01
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

            for num_frames in [4, 8, 16, 32, 64, 128]:
                start_pts_ind_max = vframe_pts.size(0) - num_frames
                if start_pts_ind_max <= 0:
                    continue
                # randomly pick start pts
                start_pts_ind = randint(0, start_pts_ind_max)
                end_pts_ind = start_pts_ind + num_frames - 1
                video_start_pts = vframe_pts[start_pts_ind]
                video_end_pts = vframe_pts[end_pts_ind]

                video_timebase_num, video_timebase_den = vtimebase[0], vtimebase[1]
                if len(atimebase) > 0:
                    # when audio stream is available
                    audio_timebase_num, audio_timebase_den = atimebase[0], atimebase[1]
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.ceil,
                    )

                # pass 2: decode frames in the randomly generated range
                tv_result = torch.ops.video_reader.read_video_from_memory(
                    video_tensor,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
1092
                    max_dimension,
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

                # pass 3: decode frames in range using PyAv
1107
1108
1109
                video_timebase_av, audio_timebase_av = _get_timebase_by_av_module(
                    full_path
                )
1110
1111
1112
1113

                video_start_pts_av = _pts_convert(
                    video_start_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1114
1115
1116
                    Fraction(
                        video_timebase_av.numerator, video_timebase_av.denominator
                    ),
1117
1118
1119
1120
1121
                    math.floor,
                )
                video_end_pts_av = _pts_convert(
                    video_end_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1122
1123
1124
                    Fraction(
                        video_timebase_av.numerator, video_timebase_av.denominator
                    ),
1125
1126
1127
1128
1129
1130
                    math.ceil,
                )
                if audio_timebase_av:
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1131
1132
1133
                        Fraction(
                            audio_timebase_av.numerator, audio_timebase_av.denominator
                        ),
1134
1135
1136
1137
1138
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1139
1140
1141
                        Fraction(
                            audio_timebase_av.numerator, audio_timebase_av.denominator
                        ),
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
                        math.ceil,
                    )

                pyav_result = _decode_frames_by_av_module(
                    full_path,
                    video_start_pts_av,
                    video_end_pts_av,
                    audio_start_pts,
                    audio_end_pts,
                )

1153
                assert tv_result[0].size(0) == num_frames
1154
1155
1156
1157
1158
1159
                if pyav_result.vframes.size(0) == num_frames:
                    # if PyAv decodes a different number of video frames, skip
                    # comparing the decoding results between Torchvision video reader
                    # and PyAv
                    self.compare_decoding_result(tv_result, pyav_result, config)

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    def test_probe_video_from_file(self):
        """
        Test the case when decoder probes a video file
        """
        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_file(full_path)
            self.check_probe_result(probe_result, config)

    def test_probe_video_from_memory(self):
        """
        Test the case when decoder probes a video in memory
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_memory(video_tensor)
            self.check_probe_result(probe_result, config)

1178
1179
    def test_probe_video_from_memory_script(self):
        scripted_fun = torch.jit.script(io._probe_video_from_memory)
1180
        assert scripted_fun is not None
1181
1182
1183
1184
1185
1186

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = scripted_fun(video_tensor)
            self.check_meta_result(probe_result, config)

1187
    @PY39_SKIP
1188
1189
1190
1191
1192
    def test_read_video_from_memory_scripted(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
1193
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
1194
1195
1196
1197
1198
1199
1200
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

1201
        scripted_fun = torch.jit.script(io._read_video_from_memory)
1202
        assert scripted_fun is not None
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

        for test_video, _config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # decode all frames using cpp decoder
            scripted_fun(
                video_tensor,
                seek_frame_margin,
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1215
                max_dimension,
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
                [video_start_pts, video_end_pts],
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                [audio_start_pts, audio_end_pts],
                audio_timebase_num,
                audio_timebase_den,
            )
            # FUTURE: check value of video / audio frames

1228
1229
    def test_invalid_file(self):
        set_video_backend('video_reader')
1230
        with pytest.raises(RuntimeError):
1231
1232
1233
            io.read_video('foo.mp4')

        set_video_backend('pyav')
1234
        with pytest.raises(RuntimeError):
1235
1236
            io.read_video('foo.mp4')

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
    def test_audio_present_pts(self):
        """Test if audio frames are returned with pts unit."""
        backends = ['video_reader', 'pyav']
        start_offsets = [0, 1000]
        end_offsets = [3000, None]
        for test_video, _ in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            container = av.open(full_path)
            if container.streams.audio:
                for backend, start_offset, end_offset in itertools.product(
                        backends, start_offsets, end_offsets):
                    set_video_backend(backend)
                    _, audio, _ = io.read_video(
                        full_path, start_offset, end_offset, pts_unit='pts')
1251
                    assert all([dimension > 0 for dimension in audio.shape[:2]])
1252
1253
1254
1255
1256
1257

    def test_audio_present_sec(self):
        """Test if audio frames are returned with sec unit."""
        backends = ['video_reader', 'pyav']
        start_offsets = [0, 0.1]
        end_offsets = [0.3, None]
1258
1259
1260
1261
        for test_video, _ in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            container = av.open(full_path)
            if container.streams.audio:
1262
1263
1264
1265
1266
                for backend, start_offset, end_offset in itertools.product(
                        backends, start_offsets, end_offsets):
                    set_video_backend(backend)
                    _, audio, _ = io.read_video(
                        full_path, start_offset, end_offset, pts_unit='sec')
1267
                    assert all([dimension > 0 for dimension in audio.shape[:2]])
1268

1269

1270
1271
if __name__ == '__main__':
    pytest.main([__file__])