test_video_reader.py 45 KB
Newer Older
1
2
3
4
import collections
import math
import os
import time
5
6
7
8
import unittest
from fractions import Fraction

import numpy as np
9
10
11
import torch
import torchvision.io as io
from numpy.random import randint
12
from torchvision.io import _HAS_VIDEO_OPT
13
from common_utils import PY39_SKIP
14

15
16
17

try:
    import av
18

19
20
21
22
23
24
    # Do a version test too
    io.video._check_av_available()
except ImportError:
    av = None


25
from urllib.error import URLError
26
27
28
29
30


VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")

CheckerConfig = [
31
    "duration",
32
33
34
35
36
37
38
    "video_fps",
    "audio_sample_rate",
    # We find for some videos (e.g. HMDB51 videos), the decoded audio frames and pts are
    # slightly different between TorchVision decoder and PyAv decoder. So omit it during check
    "check_aframes",
    "check_aframe_pts",
]
39
GroundTruth = collections.namedtuple("GroundTruth", " ".join(CheckerConfig))
40
41

all_check_config = GroundTruth(
42
    duration=0,
43
44
45
46
47
48
49
50
    video_fps=0,
    audio_sample_rate=0,
    check_aframes=True,
    check_aframe_pts=True,
)

test_videos = {
    "RATRACE_wave_f_nm_np1_fr_goo_37.avi": GroundTruth(
51
        duration=2.0,
52
53
54
55
56
57
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi": GroundTruth(
58
        duration=2.0,
59
60
61
62
63
64
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "TrumanShow_wave_f_nm_np1_fr_med_26.avi": GroundTruth(
65
        duration=2.0,
66
67
68
69
70
71
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g23_c01.avi": GroundTruth(
72
        duration=8.0,
73
74
75
76
77
78
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g24_c01.avi": GroundTruth(
79
        duration=8.0,
80
81
82
83
84
85
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "R6llTwEh07w.mp4": GroundTruth(
86
        duration=10.0,
87
88
89
90
91
92
93
        video_fps=30.0,
        audio_sample_rate=44100,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "SOX5yA1l24A.mp4": GroundTruth(
94
        duration=11.0,
95
96
97
98
99
100
101
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "WUzgd7C1pWA.mp4": GroundTruth(
102
        duration=11.0,
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
}


DecoderResult = collections.namedtuple(
    "DecoderResult", "vframes vframe_pts vtimebase aframes aframe_pts atimebase"
)

"""av_seek_frame is imprecise so seek to a timestamp earlier by a margin
The unit of margin is second"""
seek_frame_margin = 0.25


def _read_from_stream(
    container, start_pts, end_pts, stream, stream_name, buffer_size=4
):
    """
    Args:
        container: pyav container
        start_pts/end_pts: the starting/ending Presentation TimeStamp where
            frames are read
        stream: pyav stream
        stream_name: a dictionary of streams. For example, {"video": 0} means
            video stream at stream index 0
        buffer_size: pts of frames decoded by PyAv is not guaranteed to be in
            ascending order. We need to decode more frames even when we meet end
            pts
    """
    # seeking in the stream is imprecise. Thus, seek to an ealier PTS by a margin
    margin = 1
    seek_offset = max(start_pts - margin, 0)

    container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    frames = {}
    buffer_count = 0
    for frame in container.decode(**stream_name):
        if frame.pts < start_pts:
            continue
        if frame.pts <= end_pts:
            frames[frame.pts] = frame
        else:
            buffer_count += 1
            if buffer_count >= buffer_size:
                break
    result = [frames[pts] for pts in sorted(frames)]

    return result


def _get_timebase_by_av_module(full_path):
    container = av.open(full_path)
    video_time_base = container.streams.video[0].time_base
    if container.streams.audio:
        audio_time_base = container.streams.audio[0].time_base
    else:
        audio_time_base = None
    return video_time_base, audio_time_base


def _fraction_to_tensor(fraction):
    ret = torch.zeros([2], dtype=torch.int32)
    ret[0] = fraction.numerator
    ret[1] = fraction.denominator
    return ret


def _decode_frames_by_av_module(
    full_path,
    video_start_pts=0,
    video_end_pts=None,
    audio_start_pts=0,
    audio_end_pts=None,
):
    """
    Use PyAv to decode video frames. This provides a reference for our decoder
    to compare the decoding results.
    Input arguments:
        full_path: video file path
        video_start_pts/video_end_pts: the starting/ending Presentation TimeStamp where
            frames are read
    """
    if video_end_pts is None:
190
        video_end_pts = float("inf")
191
    if audio_end_pts is None:
192
        audio_end_pts = float("inf")
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    container = av.open(full_path)

    video_frames = []
    vtimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.video:
        video_frames = _read_from_stream(
            container,
            video_start_pts,
            video_end_pts,
            container.streams.video[0],
            {"video": 0},
        )
        # container.streams.video[0].average_rate is not a reliable estimator of
        # frame rate. It can be wrong for certain codec, such as VP80
        # So we do not return video fps here
        vtimebase = _fraction_to_tensor(container.streams.video[0].time_base)

    audio_frames = []
    atimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.audio:
        audio_frames = _read_from_stream(
            container,
            audio_start_pts,
            audio_end_pts,
            container.streams.audio[0],
            {"audio": 0},
        )
        atimebase = _fraction_to_tensor(container.streams.audio[0].time_base)

    container.close()
    vframes = [frame.to_rgb().to_ndarray() for frame in video_frames]
    vframes = torch.as_tensor(np.stack(vframes))

    vframe_pts = torch.tensor([frame.pts for frame in video_frames], dtype=torch.int64)

    aframes = [frame.to_ndarray() for frame in audio_frames]
    if aframes:
        aframes = np.transpose(np.concatenate(aframes, axis=1))
        aframes = torch.as_tensor(aframes)
    else:
        aframes = torch.empty((1, 0), dtype=torch.float32)

    aframe_pts = torch.tensor(
        [audio_frame.pts for audio_frame in audio_frames], dtype=torch.int64
    )

    return DecoderResult(
        vframes=vframes,
        vframe_pts=vframe_pts,
        vtimebase=vtimebase,
        aframes=aframes,
        aframe_pts=aframe_pts,
        atimebase=atimebase,
    )


def _pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return int(round_func(new_pts))


def _get_video_tensor(video_dir, video_file):
    """open a video file, and represent the video data by a PT tensor"""
    full_path = os.path.join(video_dir, video_file)

    assert os.path.exists(full_path), "File not found: %s" % full_path

    with open(full_path, "rb") as fp:
        video_tensor = torch.from_numpy(np.frombuffer(fp.read(), dtype=np.uint8))

    return full_path, video_tensor


@unittest.skipIf(av is None, "PyAV unavailable")
@unittest.skipIf(_HAS_VIDEO_OPT is False, "Didn't compile with ffmpeg")
class TestVideoReader(unittest.TestCase):
    def check_separate_decoding_result(self, tv_result, config):
        """check the decoding results from TorchVision decoder
        """
279
280
281
282
        vframes, vframe_pts, vtimebase, vfps, vduration, \
            aframes, aframe_pts, atimebase, asample_rate, aduration = (
                tv_result
            )
283
284
285

        video_duration = vduration.item() * Fraction(
            vtimebase[0].item(), vtimebase[1].item()
286
        )
287
        self.assertAlmostEqual(video_duration, config.duration, delta=0.5)
288
289
290
291

        self.assertAlmostEqual(vfps.item(), config.video_fps, delta=0.5)
        if asample_rate.numel() > 0:
            self.assertEqual(asample_rate.item(), config.audio_sample_rate)
292
293
294
295
296
            audio_duration = aduration.item() * Fraction(
                atimebase[0].item(), atimebase[1].item()
            )
            self.assertAlmostEqual(audio_duration, config.duration, delta=0.5)

297
298
299
300
301
302
303
304
305
        # check if pts of video frames are sorted in ascending order
        for i in range(len(vframe_pts) - 1):
            self.assertEqual(vframe_pts[i] < vframe_pts[i + 1], True)

        if len(aframe_pts) > 1:
            # check if pts of audio frames are sorted in ascending order
            for i in range(len(aframe_pts) - 1):
                self.assertEqual(aframe_pts[i] < aframe_pts[i + 1], True)

306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def check_probe_result(self, result, config):
        vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
        video_duration = vduration.item() * Fraction(
            vtimebase[0].item(), vtimebase[1].item()
        )
        self.assertAlmostEqual(video_duration, config.duration, delta=0.5)
        self.assertAlmostEqual(vfps.item(), config.video_fps, delta=0.5)
        if asample_rate.numel() > 0:
            self.assertEqual(asample_rate.item(), config.audio_sample_rate)
            audio_duration = aduration.item() * Fraction(
                atimebase[0].item(), atimebase[1].item()
            )
            self.assertAlmostEqual(audio_duration, config.duration, delta=0.5)

320
321
322
323
324
325
326
    def check_meta_result(self, result, config):
        self.assertAlmostEqual(result.video_duration, config.duration, delta=0.5)
        self.assertAlmostEqual(result.video_fps, config.video_fps, delta=0.5)
        if result.has_audio > 0:
            self.assertEqual(result.audio_sample_rate, config.audio_sample_rate)
            self.assertAlmostEqual(result.audio_duration, config.duration, delta=0.5)

327
328
329
330
331
332
333
334
335
    def compare_decoding_result(self, tv_result, ref_result, config=all_check_config):
        """
        Compare decoding results from two sources.
        Args:
            tv_result: decoding results from TorchVision decoder
            ref_result: reference decoding results which can be from either PyAv
                        decoder or TorchVision decoder with getPtsOnly = 1
            config: config of decoding results checker
        """
336
337
338
339
        vframes, vframe_pts, vtimebase, _vfps, _vduration, \
            aframes, aframe_pts, atimebase, _asample_rate, _aduration = (
                tv_result
            )
340
341
342
343
344
345
        if isinstance(ref_result, list):
            # the ref_result is from new video_reader decoder
            ref_result = DecoderResult(
                vframes=ref_result[0],
                vframe_pts=ref_result[1],
                vtimebase=ref_result[2],
346
347
348
                aframes=ref_result[5],
                aframe_pts=ref_result[6],
                atimebase=ref_result[7],
349
350
351
            )

        if vframes.numel() > 0 and ref_result.vframes.numel() > 0:
352
353
354
            mean_delta = torch.mean(
                torch.abs(vframes.float() - ref_result.vframes.float())
            )
355
356
            self.assertAlmostEqual(mean_delta, 0, delta=8.0)

357
358
359
        mean_delta = torch.mean(
            torch.abs(vframe_pts.float() - ref_result.vframe_pts.float())
        )
360
361
362
363
364
        self.assertAlmostEqual(mean_delta, 0, delta=1.0)

        is_same = torch.all(torch.eq(vtimebase, ref_result.vtimebase)).item()
        self.assertEqual(is_same, True)

365
366
367
368
369
        if (
            config.check_aframes
            and aframes.numel() > 0
            and ref_result.aframes.numel() > 0
        ):
370
371
372
373
374
            """Audio stream is available and audio frame is required to return
            from decoder"""
            is_same = torch.all(torch.eq(aframes, ref_result.aframes)).item()
            self.assertEqual(is_same, True)

375
376
377
378
379
        if (
            config.check_aframe_pts
            and aframe_pts.numel() > 0
            and ref_result.aframe_pts.numel() > 0
        ):
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
            """Audio stream is available"""
            is_same = torch.all(torch.eq(aframe_pts, ref_result.aframe_pts)).item()
            self.assertEqual(is_same, True)

            is_same = torch.all(torch.eq(atimebase, ref_result.atimebase)).item()
            self.assertEqual(is_same, True)

    @unittest.skip(
        "This stress test will iteratively decode the same set of videos."
        "It helps to detect memory leak but it takes lots of time to run."
        "By default, it is disabled"
    )
    def test_stress_test_read_video_from_file(self):
        num_iter = 10000
        # video related
395
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
396
397
398
399
400
401
402
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

403
404
        for _i in range(num_iter):
            for test_video, _config in test_videos.items():
405
406
407
                full_path = os.path.join(VIDEO_DIR, test_video)

                # pass 1: decode all frames using new decoder
408
                torch.ops.video_reader.read_video_from_file(
409
410
411
412
413
414
415
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
416
                    max_dimension,
417
418
419
420
421
422
423
424
425
426
427
428
429
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

430
    @PY39_SKIP
431
432
433
434
435
    def test_read_video_from_file(self):
        """
        Test the case when decoder starts with a video file to decode frames.
        """
        # video related
436
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
456
                max_dimension,
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)
            # check results from TorchVision decoder
            self.check_separate_decoding_result(tv_result, config)
            # compare decoding results
            self.compare_decoding_result(tv_result, pyav_result, config)

476
    @PY39_SKIP
477
478
479
480
481
482
    def test_read_video_from_file_read_single_stream_only(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        only reads video stream and ignores audio stream
        """
        # video related
483
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            for readVideoStream, readAudioStream in [(1, 0), (0, 1)]:
                # decode all frames using new decoder
                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    readVideoStream,
                    width,
                    height,
                    min_dimension,
503
                    max_dimension,
504
505
506
507
508
509
510
511
512
513
514
515
516
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    readAudioStream,
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

517
518
519
520
                vframes, vframe_pts, vtimebase, vfps, vduration, \
                    aframes, aframe_pts, atimebase, asample_rate, aduration = (
                        tv_result
                    )
521
522
523
524
525
526

                self.assertEqual(vframes.numel() > 0, readVideoStream)
                self.assertEqual(vframe_pts.numel() > 0, readVideoStream)
                self.assertEqual(vtimebase.numel() > 0, readVideoStream)
                self.assertEqual(vfps.numel() > 0, readVideoStream)

527
528
529
                expect_audio_data = (
                    readAudioStream == 1 and config.audio_sample_rate is not None
                )
530
531
532
533
534
535
536
537
538
539
540
                self.assertEqual(aframes.numel() > 0, expect_audio_data)
                self.assertEqual(aframe_pts.numel() > 0, expect_audio_data)
                self.assertEqual(atimebase.numel() > 0, expect_audio_data)
                self.assertEqual(asample_rate.numel() > 0, expect_audio_data)

    def test_read_video_from_file_rescale_min_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
541
        width, height, min_dimension, max_dimension = 0, 0, 128, 0
542
543
544
545
546
547
548
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

549
        for test_video, _config in test_videos.items():
550
551
552
553
554
555
556
557
558
559
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
560
                max_dimension,
561
562
563
564
565
566
567
568
569
570
571
572
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
573
574
575
            self.assertEqual(
                min_dimension, min(tv_result[0].size(1), tv_result[0].size(2))
            )
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    def test_read_video_from_file_rescale_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 0, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(
                max_dimension, max(tv_result[0].size(1), tv_result[0].size(2))
            )

    def test_read_video_from_file_rescale_both_min_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 64, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(
                min_dimension, min(tv_result[0].size(1), tv_result[0].size(2))
            )
            self.assertEqual(
                max_dimension, max(tv_result[0].size(1), tv_result[0].size(2))
            )

664
665
666
667
668
669
    def test_read_video_from_file_rescale_width(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video width is set.
        """
        # video related
670
        width, height, min_dimension, max_dimension = 256, 0, 0, 0
671
672
673
674
675
676
677
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

678
        for test_video, _config in test_videos.items():
679
680
681
682
683
684
685
686
687
688
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
689
                max_dimension,
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(tv_result[0].size(2), width)

    def test_read_video_from_file_rescale_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video height is set.
        """
        # video related
710
        width, height, min_dimension, max_dimension = 0, 224, 0, 0
711
712
713
714
715
716
717
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

718
        for test_video, _config in test_videos.items():
719
720
721
722
723
724
725
726
727
728
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
729
                max_dimension,
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(tv_result[0].size(1), height)

    def test_read_video_from_file_rescale_width_and_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        both video height and width are set.
        """
        # video related
750
        width, height, min_dimension, max_dimension = 320, 240, 0, 0
751
752
753
754
755
756
757
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

758
        for test_video, _config in test_videos.items():
759
760
761
762
763
764
765
766
767
768
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
769
                max_dimension,
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(tv_result[0].size(1), height)
            self.assertEqual(tv_result[0].size(2), width)

785
    @PY39_SKIP
786
787
788
789
790
791
    def test_read_video_from_file_audio_resampling(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        audio waveform are resampled
        """

792
        for samples in [9600, 96000]:  # downsampling  # upsampling
793
            # video related
794
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
795
796
797
798
799
800
801
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            channels = 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1

802
            for test_video, _config in test_videos.items():
803
804
805
806
807
808
809
810
811
812
                full_path = os.path.join(VIDEO_DIR, test_video)

                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
813
                    max_dimension,
814
815
816
817
818
819
820
821
822
823
824
825
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )
826
827
828
829
                vframes, vframe_pts, vtimebase, vfps, vduration, \
                    aframes, aframe_pts, atimebase, asample_rate, aduration = (
                        tv_result
                    )
830
                if aframes.numel() > 0:
831
                    self.assertEqual(samples, asample_rate.item())
832
833
                    self.assertEqual(1, aframes.size(1))
                    # when audio stream is found
834
835
836
837
838
                    duration = (
                        float(aframe_pts[-1])
                        * float(atimebase[0])
                        / float(atimebase[1])
                    )
839
840
                    self.assertAlmostEqual(
                        aframes.size(0),
841
842
                        int(duration * asample_rate.item()),
                        delta=0.1 * asample_rate.item(),
843
844
                    )

845
    @PY39_SKIP
846
847
848
849
850
    def test_compare_read_video_from_memory_and_file(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
851
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result_memory = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
871
                max_dimension,
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.check_separate_decoding_result(tv_result_memory, config)
            # pass 2: decode all frames from file
            tv_result_file = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
894
                max_dimension,
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

            self.check_separate_decoding_result(tv_result_file, config)
            # finally, compare results decoded from memory and file
            self.compare_decoding_result(tv_result_memory, tv_result_file)

912
    @PY39_SKIP
913
914
915
916
917
    def test_read_video_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
918
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
938
                max_dimension,
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)

            self.check_separate_decoding_result(tv_result, config)
            self.compare_decoding_result(tv_result, pyav_result, config)

957
    @PY39_SKIP
958
959
960
961
962
963
964
    def test_read_video_from_memory_get_pts_only(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        Compare frame pts between decoding for pts only and full decoding
        for both pts and frame data
        """
        # video related
965
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
985
                max_dimension,
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertAlmostEqual(config.video_fps, tv_result[3].item(), delta=0.01)

            # pass 2: decode all frames to get PTS only using cpp decoder
            tv_result_pts_only = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                1,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1009
                max_dimension,
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

            self.assertEqual(tv_result_pts_only[0].numel(), 0)
1024
            self.assertEqual(tv_result_pts_only[5].numel(), 0)
1025
1026
            self.compare_decoding_result(tv_result, tv_result_pts_only)

1027
    @PY39_SKIP
1028
1029
1030
1031
1032
1033
1034
1035
1036
    def test_read_video_in_range_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        In addition, decoder takes meaningful start- and end PTS as input, and decode
        frames within that interval
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            # video related
1037
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            samples, channels = 0, 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1
            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1053
                max_dimension,
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
1066
1067
1068
1069
            vframes, vframe_pts, vtimebase, vfps, vduration, \
                aframes, aframe_pts, atimebase, asample_rate, aduration = (
                    tv_result
                )
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
            self.assertAlmostEqual(config.video_fps, vfps.item(), delta=0.01)

            for num_frames in [4, 8, 16, 32, 64, 128]:
                start_pts_ind_max = vframe_pts.size(0) - num_frames
                if start_pts_ind_max <= 0:
                    continue
                # randomly pick start pts
                start_pts_ind = randint(0, start_pts_ind_max)
                end_pts_ind = start_pts_ind + num_frames - 1
                video_start_pts = vframe_pts[start_pts_ind]
                video_end_pts = vframe_pts[end_pts_ind]

                video_timebase_num, video_timebase_den = vtimebase[0], vtimebase[1]
                if len(atimebase) > 0:
                    # when audio stream is available
                    audio_timebase_num, audio_timebase_den = atimebase[0], atimebase[1]
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.ceil,
                    )

                # pass 2: decode frames in the randomly generated range
                tv_result = torch.ops.video_reader.read_video_from_memory(
                    video_tensor,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
1108
                    max_dimension,
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

                # pass 3: decode frames in range using PyAv
1123
1124
1125
                video_timebase_av, audio_timebase_av = _get_timebase_by_av_module(
                    full_path
                )
1126
1127
1128
1129

                video_start_pts_av = _pts_convert(
                    video_start_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1130
1131
1132
                    Fraction(
                        video_timebase_av.numerator, video_timebase_av.denominator
                    ),
1133
1134
1135
1136
1137
                    math.floor,
                )
                video_end_pts_av = _pts_convert(
                    video_end_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1138
1139
1140
                    Fraction(
                        video_timebase_av.numerator, video_timebase_av.denominator
                    ),
1141
1142
1143
1144
1145
1146
                    math.ceil,
                )
                if audio_timebase_av:
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1147
1148
1149
                        Fraction(
                            audio_timebase_av.numerator, audio_timebase_av.denominator
                        ),
1150
1151
1152
1153
1154
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1155
1156
1157
                        Fraction(
                            audio_timebase_av.numerator, audio_timebase_av.denominator
                        ),
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
                        math.ceil,
                    )

                pyav_result = _decode_frames_by_av_module(
                    full_path,
                    video_start_pts_av,
                    video_end_pts_av,
                    audio_start_pts,
                    audio_end_pts,
                )

                self.assertEqual(tv_result[0].size(0), num_frames)
                if pyav_result.vframes.size(0) == num_frames:
                    # if PyAv decodes a different number of video frames, skip
                    # comparing the decoding results between Torchvision video reader
                    # and PyAv
                    self.compare_decoding_result(tv_result, pyav_result, config)

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    def test_probe_video_from_file(self):
        """
        Test the case when decoder probes a video file
        """
        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_file(full_path)
            self.check_probe_result(probe_result, config)

    def test_probe_video_from_memory(self):
        """
        Test the case when decoder probes a video in memory
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_memory(video_tensor)
            self.check_probe_result(probe_result, config)

1194
1195
    def test_probe_video_from_memory_script(self):
        scripted_fun = torch.jit.script(io._probe_video_from_memory)
1196
1197
1198
1199
1200
1201
1202
        self.assertIsNotNone(scripted_fun)

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = scripted_fun(video_tensor)
            self.check_meta_result(probe_result, config)

1203
    @PY39_SKIP
1204
1205
1206
1207
1208
    def test_read_video_from_memory_scripted(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
1209
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
1210
1211
1212
1213
1214
1215
1216
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

1217
        scripted_fun = torch.jit.script(io._read_video_from_memory)
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
        self.assertIsNotNone(scripted_fun)

        for test_video, _config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # decode all frames using cpp decoder
            scripted_fun(
                video_tensor,
                seek_frame_margin,
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1231
                max_dimension,
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
                [video_start_pts, video_end_pts],
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                [audio_start_pts, audio_end_pts],
                audio_timebase_num,
                audio_timebase_den,
            )
            # FUTURE: check value of video / audio frames

1244

1245
if __name__ == "__main__":
1246
    unittest.main()