_augment.py 1.65 KB
Newer Older
1
2
3
import PIL.Image

import torch
4
from torchvision import datapoints
5
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
6
from torchvision.utils import _log_api_usage_once
7

8
from ._utils import _get_kernel, _register_kernel_internal
9

10

11
def erase(
12
    inpt: torch.Tensor,
13
14
15
16
17
18
    i: int,
    j: int,
    h: int,
    w: int,
    v: torch.Tensor,
    inplace: bool = False,
19
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
20
    """[BETA] See :class:`~torchvision.transforms.v2.RandomErase` for details."""
21
    if torch.jit.is_scripting():
22
        return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
23
24
25
26
27

    _log_api_usage_once(erase)

    kernel = _get_kernel(erase, type(inpt))
    return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
28
29


30
@_register_kernel_internal(erase, torch.Tensor)
31
@_register_kernel_internal(erase, datapoints.Image)
32
def erase_image(
33
34
35
36
37
38
39
    image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> torch.Tensor:
    if not inplace:
        image = image.clone()

    image[..., i : i + h, j : j + w] = v
    return image
40
41


42
@_register_kernel_internal(erase, PIL.Image.Image)
43
def _erase_image_pil(
44
    image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
45
) -> PIL.Image.Image:
46
    t_img = pil_to_tensor(image)
47
    output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
48
    return to_pil_image(output, mode=image.mode)
49
50


51
@_register_kernel_internal(erase, datapoints.Video)
52
53
54
def erase_video(
    video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> torch.Tensor:
55
    return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)