_augment.py 2.18 KB
Newer Older
1
2
from typing import Union

3
4
5
import PIL.Image

import torch
6
from torchvision import datapoints
7
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
8
from torchvision.utils import _log_api_usage_once
9

10
from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal, is_simple_tensor
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
@_register_explicit_noop(datapoints.Mask, datapoints.BoundingBoxes, warn_passthrough=True)
def erase(
    inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT],
    i: int,
    j: int,
    h: int,
    w: int,
    v: torch.Tensor,
    inplace: bool = False,
) -> Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]:
    if not torch.jit.is_scripting():
        _log_api_usage_once(erase)

    if torch.jit.is_scripting() or is_simple_tensor(inpt):
        return erase_image_tensor(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
    elif isinstance(inpt, datapoints.Datapoint):
        kernel = _get_kernel(erase, type(inpt))
        return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
    elif isinstance(inpt, PIL.Image.Image):
        return erase_image_pil(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
    else:
        raise TypeError(
            f"Input can either be a plain tensor, any TorchVision datapoint, or a PIL image, "
            f"but got {type(inpt)} instead."
        )


@_register_kernel_internal(erase, datapoints.Image)
41
42
43
44
45
46
47
48
def erase_image_tensor(
    image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> torch.Tensor:
    if not inplace:
        image = image.clone()

    image[..., i : i + h, j : j + w] = v
    return image
49
50


51
@torch.jit.unused
52
def erase_image_pil(
53
    image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
54
) -> PIL.Image.Image:
55
    t_img = pil_to_tensor(image)
56
    output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
57
    return to_pil_image(output, mode=image.mode)
58
59


60
@_register_kernel_internal(erase, datapoints.Video)
61
62
63
64
def erase_video(
    video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> torch.Tensor:
    return erase_image_tensor(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)