test_video_reader.py 45.5 KB
Newer Older
1
2
3
import collections
import math
import os
4
5
6
7
import unittest
from fractions import Fraction

import numpy as np
8
9
10
import torch
import torchvision.io as io
from numpy.random import randint
11
from torchvision import set_video_backend
12
from torchvision.io import _HAS_VIDEO_OPT
13
from common_utils import PY39_SKIP
14
from _assert_utils import assert_equal
15

16
17
18

try:
    import av
19

20
21
22
23
24
25
26
27
28
    # Do a version test too
    io.video._check_av_available()
except ImportError:
    av = None


VIDEO_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "videos")

CheckerConfig = [
29
    "duration",
30
31
32
33
34
35
36
    "video_fps",
    "audio_sample_rate",
    # We find for some videos (e.g. HMDB51 videos), the decoded audio frames and pts are
    # slightly different between TorchVision decoder and PyAv decoder. So omit it during check
    "check_aframes",
    "check_aframe_pts",
]
37
GroundTruth = collections.namedtuple("GroundTruth", " ".join(CheckerConfig))
38
39

all_check_config = GroundTruth(
40
    duration=0,
41
42
43
44
45
46
47
48
    video_fps=0,
    audio_sample_rate=0,
    check_aframes=True,
    check_aframe_pts=True,
)

test_videos = {
    "RATRACE_wave_f_nm_np1_fr_goo_37.avi": GroundTruth(
49
        duration=2.0,
50
51
52
53
54
55
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "SchoolRulesHowTheyHelpUs_wave_f_nm_np1_ba_med_0.avi": GroundTruth(
56
        duration=2.0,
57
58
59
60
61
62
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "TrumanShow_wave_f_nm_np1_fr_med_26.avi": GroundTruth(
63
        duration=2.0,
64
65
66
67
68
69
        video_fps=30.0,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g23_c01.avi": GroundTruth(
70
        duration=8.0,
71
72
73
74
75
76
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "v_SoccerJuggling_g24_c01.avi": GroundTruth(
77
        duration=8.0,
78
79
80
81
82
83
        video_fps=29.97,
        audio_sample_rate=None,
        check_aframes=True,
        check_aframe_pts=True,
    ),
    "R6llTwEh07w.mp4": GroundTruth(
84
        duration=10.0,
85
86
87
88
89
90
91
        video_fps=30.0,
        audio_sample_rate=44100,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "SOX5yA1l24A.mp4": GroundTruth(
92
        duration=11.0,
93
94
95
96
97
98
99
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
    "WUzgd7C1pWA.mp4": GroundTruth(
100
        duration=11.0,
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        video_fps=29.97,
        audio_sample_rate=48000,
        # PyAv miss one audio frame at the beginning (pts=0)
        check_aframes=False,
        check_aframe_pts=False,
    ),
}


DecoderResult = collections.namedtuple(
    "DecoderResult", "vframes vframe_pts vtimebase aframes aframe_pts atimebase"
)

"""av_seek_frame is imprecise so seek to a timestamp earlier by a margin
The unit of margin is second"""
seek_frame_margin = 0.25


def _read_from_stream(
    container, start_pts, end_pts, stream, stream_name, buffer_size=4
):
    """
    Args:
        container: pyav container
        start_pts/end_pts: the starting/ending Presentation TimeStamp where
            frames are read
        stream: pyav stream
        stream_name: a dictionary of streams. For example, {"video": 0} means
            video stream at stream index 0
        buffer_size: pts of frames decoded by PyAv is not guaranteed to be in
            ascending order. We need to decode more frames even when we meet end
            pts
    """
    # seeking in the stream is imprecise. Thus, seek to an ealier PTS by a margin
    margin = 1
    seek_offset = max(start_pts - margin, 0)

    container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    frames = {}
    buffer_count = 0
    for frame in container.decode(**stream_name):
        if frame.pts < start_pts:
            continue
        if frame.pts <= end_pts:
            frames[frame.pts] = frame
        else:
            buffer_count += 1
            if buffer_count >= buffer_size:
                break
    result = [frames[pts] for pts in sorted(frames)]

    return result


def _get_timebase_by_av_module(full_path):
    container = av.open(full_path)
    video_time_base = container.streams.video[0].time_base
    if container.streams.audio:
        audio_time_base = container.streams.audio[0].time_base
    else:
        audio_time_base = None
    return video_time_base, audio_time_base


def _fraction_to_tensor(fraction):
    ret = torch.zeros([2], dtype=torch.int32)
    ret[0] = fraction.numerator
    ret[1] = fraction.denominator
    return ret


def _decode_frames_by_av_module(
    full_path,
    video_start_pts=0,
    video_end_pts=None,
    audio_start_pts=0,
    audio_end_pts=None,
):
    """
    Use PyAv to decode video frames. This provides a reference for our decoder
    to compare the decoding results.
    Input arguments:
        full_path: video file path
        video_start_pts/video_end_pts: the starting/ending Presentation TimeStamp where
            frames are read
    """
    if video_end_pts is None:
188
        video_end_pts = float("inf")
189
    if audio_end_pts is None:
190
        audio_end_pts = float("inf")
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    container = av.open(full_path)

    video_frames = []
    vtimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.video:
        video_frames = _read_from_stream(
            container,
            video_start_pts,
            video_end_pts,
            container.streams.video[0],
            {"video": 0},
        )
        # container.streams.video[0].average_rate is not a reliable estimator of
        # frame rate. It can be wrong for certain codec, such as VP80
        # So we do not return video fps here
        vtimebase = _fraction_to_tensor(container.streams.video[0].time_base)

    audio_frames = []
    atimebase = torch.zeros([0], dtype=torch.int32)
    if container.streams.audio:
        audio_frames = _read_from_stream(
            container,
            audio_start_pts,
            audio_end_pts,
            container.streams.audio[0],
            {"audio": 0},
        )
        atimebase = _fraction_to_tensor(container.streams.audio[0].time_base)

    container.close()
    vframes = [frame.to_rgb().to_ndarray() for frame in video_frames]
    vframes = torch.as_tensor(np.stack(vframes))

    vframe_pts = torch.tensor([frame.pts for frame in video_frames], dtype=torch.int64)

    aframes = [frame.to_ndarray() for frame in audio_frames]
    if aframes:
        aframes = np.transpose(np.concatenate(aframes, axis=1))
        aframes = torch.as_tensor(aframes)
    else:
        aframes = torch.empty((1, 0), dtype=torch.float32)

    aframe_pts = torch.tensor(
        [audio_frame.pts for audio_frame in audio_frames], dtype=torch.int64
    )

    return DecoderResult(
        vframes=vframes,
        vframe_pts=vframe_pts,
        vtimebase=vtimebase,
        aframes=aframes,
        aframe_pts=aframe_pts,
        atimebase=atimebase,
    )


def _pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return int(round_func(new_pts))


def _get_video_tensor(video_dir, video_file):
    """open a video file, and represent the video data by a PT tensor"""
    full_path = os.path.join(video_dir, video_file)

    assert os.path.exists(full_path), "File not found: %s" % full_path

    with open(full_path, "rb") as fp:
        video_tensor = torch.from_numpy(np.frombuffer(fp.read(), dtype=np.uint8))

    return full_path, video_tensor


@unittest.skipIf(av is None, "PyAV unavailable")
@unittest.skipIf(_HAS_VIDEO_OPT is False, "Didn't compile with ffmpeg")
class TestVideoReader(unittest.TestCase):
    def check_separate_decoding_result(self, tv_result, config):
        """check the decoding results from TorchVision decoder
        """
277
278
279
280
        vframes, vframe_pts, vtimebase, vfps, vduration, \
            aframes, aframe_pts, atimebase, asample_rate, aduration = (
                tv_result
            )
281
282
283

        video_duration = vduration.item() * Fraction(
            vtimebase[0].item(), vtimebase[1].item()
284
        )
285
        self.assertAlmostEqual(video_duration, config.duration, delta=0.5)
286
287
288
289

        self.assertAlmostEqual(vfps.item(), config.video_fps, delta=0.5)
        if asample_rate.numel() > 0:
            self.assertEqual(asample_rate.item(), config.audio_sample_rate)
290
291
292
293
294
            audio_duration = aduration.item() * Fraction(
                atimebase[0].item(), atimebase[1].item()
            )
            self.assertAlmostEqual(audio_duration, config.duration, delta=0.5)

295
296
297
298
299
300
301
302
303
        # check if pts of video frames are sorted in ascending order
        for i in range(len(vframe_pts) - 1):
            self.assertEqual(vframe_pts[i] < vframe_pts[i + 1], True)

        if len(aframe_pts) > 1:
            # check if pts of audio frames are sorted in ascending order
            for i in range(len(aframe_pts) - 1):
                self.assertEqual(aframe_pts[i] < aframe_pts[i + 1], True)

304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def check_probe_result(self, result, config):
        vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
        video_duration = vduration.item() * Fraction(
            vtimebase[0].item(), vtimebase[1].item()
        )
        self.assertAlmostEqual(video_duration, config.duration, delta=0.5)
        self.assertAlmostEqual(vfps.item(), config.video_fps, delta=0.5)
        if asample_rate.numel() > 0:
            self.assertEqual(asample_rate.item(), config.audio_sample_rate)
            audio_duration = aduration.item() * Fraction(
                atimebase[0].item(), atimebase[1].item()
            )
            self.assertAlmostEqual(audio_duration, config.duration, delta=0.5)

318
319
320
321
322
323
324
    def check_meta_result(self, result, config):
        self.assertAlmostEqual(result.video_duration, config.duration, delta=0.5)
        self.assertAlmostEqual(result.video_fps, config.video_fps, delta=0.5)
        if result.has_audio > 0:
            self.assertEqual(result.audio_sample_rate, config.audio_sample_rate)
            self.assertAlmostEqual(result.audio_duration, config.duration, delta=0.5)

325
326
327
328
329
330
331
332
333
    def compare_decoding_result(self, tv_result, ref_result, config=all_check_config):
        """
        Compare decoding results from two sources.
        Args:
            tv_result: decoding results from TorchVision decoder
            ref_result: reference decoding results which can be from either PyAv
                        decoder or TorchVision decoder with getPtsOnly = 1
            config: config of decoding results checker
        """
334
335
336
337
        vframes, vframe_pts, vtimebase, _vfps, _vduration, \
            aframes, aframe_pts, atimebase, _asample_rate, _aduration = (
                tv_result
            )
338
339
340
341
342
343
        if isinstance(ref_result, list):
            # the ref_result is from new video_reader decoder
            ref_result = DecoderResult(
                vframes=ref_result[0],
                vframe_pts=ref_result[1],
                vtimebase=ref_result[2],
344
345
346
                aframes=ref_result[5],
                aframe_pts=ref_result[6],
                atimebase=ref_result[7],
347
348
349
            )

        if vframes.numel() > 0 and ref_result.vframes.numel() > 0:
350
351
352
            mean_delta = torch.mean(
                torch.abs(vframes.float() - ref_result.vframes.float())
            )
353
354
            self.assertAlmostEqual(mean_delta, 0, delta=8.0)

355
356
357
        mean_delta = torch.mean(
            torch.abs(vframe_pts.float() - ref_result.vframe_pts.float())
        )
358
359
        self.assertAlmostEqual(mean_delta, 0, delta=1.0)

360
        assert_equal(vtimebase, ref_result.vtimebase)
361

362
363
364
365
366
        if (
            config.check_aframes
            and aframes.numel() > 0
            and ref_result.aframes.numel() > 0
        ):
367
368
            """Audio stream is available and audio frame is required to return
            from decoder"""
369
            assert_equal(aframes, ref_result.aframes)
370

371
372
373
374
375
        if (
            config.check_aframe_pts
            and aframe_pts.numel() > 0
            and ref_result.aframe_pts.numel() > 0
        ):
376
            """Audio stream is available"""
377
            assert_equal(aframe_pts, ref_result.aframe_pts)
378

379
            assert_equal(atimebase, ref_result.atimebase)
380
381
382
383
384
385
386
387
388

    @unittest.skip(
        "This stress test will iteratively decode the same set of videos."
        "It helps to detect memory leak but it takes lots of time to run."
        "By default, it is disabled"
    )
    def test_stress_test_read_video_from_file(self):
        num_iter = 10000
        # video related
389
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
390
391
392
393
394
395
396
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

397
398
        for _i in range(num_iter):
            for test_video, _config in test_videos.items():
399
400
401
                full_path = os.path.join(VIDEO_DIR, test_video)

                # pass 1: decode all frames using new decoder
402
                torch.ops.video_reader.read_video_from_file(
403
404
405
406
407
408
409
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
410
                    max_dimension,
411
412
413
414
415
416
417
418
419
420
421
422
423
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

424
    @PY39_SKIP
425
426
427
428
429
    def test_read_video_from_file(self):
        """
        Test the case when decoder starts with a video file to decode frames.
        """
        # video related
430
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
450
                max_dimension,
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)
            # check results from TorchVision decoder
            self.check_separate_decoding_result(tv_result, config)
            # compare decoding results
            self.compare_decoding_result(tv_result, pyav_result, config)

470
    @PY39_SKIP
471
472
473
474
475
476
    def test_read_video_from_file_read_single_stream_only(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        only reads video stream and ignores audio stream
        """
        # video related
477
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            for readVideoStream, readAudioStream in [(1, 0), (0, 1)]:
                # decode all frames using new decoder
                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    readVideoStream,
                    width,
                    height,
                    min_dimension,
497
                    max_dimension,
498
499
500
501
502
503
504
505
506
507
508
509
510
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    readAudioStream,
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

511
512
513
514
                vframes, vframe_pts, vtimebase, vfps, vduration, \
                    aframes, aframe_pts, atimebase, asample_rate, aduration = (
                        tv_result
                    )
515
516
517
518
519
520

                self.assertEqual(vframes.numel() > 0, readVideoStream)
                self.assertEqual(vframe_pts.numel() > 0, readVideoStream)
                self.assertEqual(vtimebase.numel() > 0, readVideoStream)
                self.assertEqual(vfps.numel() > 0, readVideoStream)

521
522
523
                expect_audio_data = (
                    readAudioStream == 1 and config.audio_sample_rate is not None
                )
524
525
526
527
528
529
530
531
532
533
534
                self.assertEqual(aframes.numel() > 0, expect_audio_data)
                self.assertEqual(aframe_pts.numel() > 0, expect_audio_data)
                self.assertEqual(atimebase.numel() > 0, expect_audio_data)
                self.assertEqual(asample_rate.numel() > 0, expect_audio_data)

    def test_read_video_from_file_rescale_min_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
535
        width, height, min_dimension, max_dimension = 0, 0, 128, 0
536
537
538
539
540
541
542
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

543
        for test_video, _config in test_videos.items():
544
545
546
547
548
549
550
551
552
553
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
554
                max_dimension,
555
556
557
558
559
560
561
562
563
564
565
566
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
567
568
569
            self.assertEqual(
                min_dimension, min(tv_result[0].size(1), tv_result[0].size(2))
            )
570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    def test_read_video_from_file_rescale_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 0, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(
                max_dimension, max(tv_result[0].size(1), tv_result[0].size(2))
            )

    def test_read_video_from_file_rescale_both_min_max_dimension(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video min dimension between height and width is set.
        """
        # video related
        width, height, min_dimension, max_dimension = 0, 0, 64, 85
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, _config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
                max_dimension,
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(
                min_dimension, min(tv_result[0].size(1), tv_result[0].size(2))
            )
            self.assertEqual(
                max_dimension, max(tv_result[0].size(1), tv_result[0].size(2))
            )

658
659
660
661
662
663
    def test_read_video_from_file_rescale_width(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video width is set.
        """
        # video related
664
        width, height, min_dimension, max_dimension = 256, 0, 0, 0
665
666
667
668
669
670
671
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

672
        for test_video, _config in test_videos.items():
673
674
675
676
677
678
679
680
681
682
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
683
                max_dimension,
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(tv_result[0].size(2), width)

    def test_read_video_from_file_rescale_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        video height is set.
        """
        # video related
704
        width, height, min_dimension, max_dimension = 0, 224, 0, 0
705
706
707
708
709
710
711
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

712
        for test_video, _config in test_videos.items():
713
714
715
716
717
718
719
720
721
722
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
723
                max_dimension,
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(tv_result[0].size(1), height)

    def test_read_video_from_file_rescale_width_and_height(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        both video height and width are set.
        """
        # video related
744
        width, height, min_dimension, max_dimension = 320, 240, 0, 0
745
746
747
748
749
750
751
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

752
        for test_video, _config in test_videos.items():
753
754
755
756
757
758
759
760
761
762
            full_path = os.path.join(VIDEO_DIR, test_video)

            tv_result = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
763
                max_dimension,
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertEqual(tv_result[0].size(1), height)
            self.assertEqual(tv_result[0].size(2), width)

779
    @PY39_SKIP
780
781
782
783
784
785
    def test_read_video_from_file_audio_resampling(self):
        """
        Test the case when decoder starts with a video file to decode frames, and
        audio waveform are resampled
        """

786
        for samples in [9600, 96000]:  # downsampling  # upsampling
787
            # video related
788
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
789
790
791
792
793
794
795
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            channels = 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1

796
            for test_video, _config in test_videos.items():
797
798
799
800
801
802
803
804
805
806
                full_path = os.path.join(VIDEO_DIR, test_video)

                tv_result = torch.ops.video_reader.read_video_from_file(
                    full_path,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
807
                    max_dimension,
808
809
810
811
812
813
814
815
816
817
818
819
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )
820
821
822
823
                vframes, vframe_pts, vtimebase, vfps, vduration, \
                    aframes, aframe_pts, atimebase, asample_rate, aduration = (
                        tv_result
                    )
824
                if aframes.numel() > 0:
825
                    self.assertEqual(samples, asample_rate.item())
826
827
                    self.assertEqual(1, aframes.size(1))
                    # when audio stream is found
828
829
830
831
832
                    duration = (
                        float(aframe_pts[-1])
                        * float(atimebase[0])
                        / float(atimebase[1])
                    )
833
834
                    self.assertAlmostEqual(
                        aframes.size(0),
835
836
                        int(duration * asample_rate.item()),
                        delta=0.1 * asample_rate.item(),
837
838
                    )

839
    @PY39_SKIP
840
841
842
843
844
    def test_compare_read_video_from_memory_and_file(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
845
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result_memory = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
865
                max_dimension,
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.check_separate_decoding_result(tv_result_memory, config)
            # pass 2: decode all frames from file
            tv_result_file = torch.ops.video_reader.read_video_from_file(
                full_path,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
888
                max_dimension,
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

            self.check_separate_decoding_result(tv_result_file, config)
            # finally, compare results decoded from memory and file
            self.compare_decoding_result(tv_result_memory, tv_result_file)

906
    @PY39_SKIP
907
908
909
910
911
    def test_read_video_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
912
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
932
                max_dimension,
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            # pass 2: decode all frames using av
            pyav_result = _decode_frames_by_av_module(full_path)

            self.check_separate_decoding_result(tv_result, config)
            self.compare_decoding_result(tv_result, pyav_result, config)

951
    @PY39_SKIP
952
953
954
955
956
957
958
    def test_read_video_from_memory_get_pts_only(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        Compare frame pts between decoding for pts only and full decoding
        for both pts and frame data
        """
        # video related
959
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # pass 1: decode all frames using cpp decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
979
                max_dimension,
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
            self.assertAlmostEqual(config.video_fps, tv_result[3].item(), delta=0.01)

            # pass 2: decode all frames to get PTS only using cpp decoder
            tv_result_pts_only = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                1,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1003
                max_dimension,
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )

            self.assertEqual(tv_result_pts_only[0].numel(), 0)
1018
            self.assertEqual(tv_result_pts_only[5].numel(), 0)
1019
1020
            self.compare_decoding_result(tv_result, tv_result_pts_only)

1021
    @PY39_SKIP
1022
1023
1024
1025
1026
1027
1028
1029
1030
    def test_read_video_in_range_from_memory(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory.
        In addition, decoder takes meaningful start- and end PTS as input, and decode
        frames within that interval
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            # video related
1031
            width, height, min_dimension, max_dimension = 0, 0, 0, 0
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
            video_start_pts, video_end_pts = 0, -1
            video_timebase_num, video_timebase_den = 0, 1
            # audio related
            samples, channels = 0, 0
            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase_num, audio_timebase_den = 0, 1
            # pass 1: decode all frames using new decoder
            tv_result = torch.ops.video_reader.read_video_from_memory(
                video_tensor,
                seek_frame_margin,
                0,  # getPtsOnly
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1047
                max_dimension,
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
                video_start_pts,
                video_end_pts,
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                audio_start_pts,
                audio_end_pts,
                audio_timebase_num,
                audio_timebase_den,
            )
1060
1061
1062
1063
            vframes, vframe_pts, vtimebase, vfps, vduration, \
                aframes, aframe_pts, atimebase, asample_rate, aduration = (
                    tv_result
                )
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
            self.assertAlmostEqual(config.video_fps, vfps.item(), delta=0.01)

            for num_frames in [4, 8, 16, 32, 64, 128]:
                start_pts_ind_max = vframe_pts.size(0) - num_frames
                if start_pts_ind_max <= 0:
                    continue
                # randomly pick start pts
                start_pts_ind = randint(0, start_pts_ind_max)
                end_pts_ind = start_pts_ind + num_frames - 1
                video_start_pts = vframe_pts[start_pts_ind]
                video_end_pts = vframe_pts[end_pts_ind]

                video_timebase_num, video_timebase_den = vtimebase[0], vtimebase[1]
                if len(atimebase) > 0:
                    # when audio stream is available
                    audio_timebase_num, audio_timebase_den = atimebase[0], atimebase[1]
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
                        Fraction(audio_timebase_num.item(), audio_timebase_den.item()),
                        math.ceil,
                    )

                # pass 2: decode frames in the randomly generated range
                tv_result = torch.ops.video_reader.read_video_from_memory(
                    video_tensor,
                    seek_frame_margin,
                    0,  # getPtsOnly
                    1,  # readVideoStream
                    width,
                    height,
                    min_dimension,
1102
                    max_dimension,
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
                    video_start_pts,
                    video_end_pts,
                    video_timebase_num,
                    video_timebase_den,
                    1,  # readAudioStream
                    samples,
                    channels,
                    audio_start_pts,
                    audio_end_pts,
                    audio_timebase_num,
                    audio_timebase_den,
                )

                # pass 3: decode frames in range using PyAv
1117
1118
1119
                video_timebase_av, audio_timebase_av = _get_timebase_by_av_module(
                    full_path
                )
1120
1121
1122
1123

                video_start_pts_av = _pts_convert(
                    video_start_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1124
1125
1126
                    Fraction(
                        video_timebase_av.numerator, video_timebase_av.denominator
                    ),
1127
1128
1129
1130
1131
                    math.floor,
                )
                video_end_pts_av = _pts_convert(
                    video_end_pts.item(),
                    Fraction(video_timebase_num.item(), video_timebase_den.item()),
1132
1133
1134
                    Fraction(
                        video_timebase_av.numerator, video_timebase_av.denominator
                    ),
1135
1136
1137
1138
1139
1140
                    math.ceil,
                )
                if audio_timebase_av:
                    audio_start_pts = _pts_convert(
                        video_start_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1141
1142
1143
                        Fraction(
                            audio_timebase_av.numerator, audio_timebase_av.denominator
                        ),
1144
1145
1146
1147
1148
                        math.floor,
                    )
                    audio_end_pts = _pts_convert(
                        video_end_pts.item(),
                        Fraction(video_timebase_num.item(), video_timebase_den.item()),
1149
1150
1151
                        Fraction(
                            audio_timebase_av.numerator, audio_timebase_av.denominator
                        ),
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
                        math.ceil,
                    )

                pyav_result = _decode_frames_by_av_module(
                    full_path,
                    video_start_pts_av,
                    video_end_pts_av,
                    audio_start_pts,
                    audio_end_pts,
                )

                self.assertEqual(tv_result[0].size(0), num_frames)
                if pyav_result.vframes.size(0) == num_frames:
                    # if PyAv decodes a different number of video frames, skip
                    # comparing the decoding results between Torchvision video reader
                    # and PyAv
                    self.compare_decoding_result(tv_result, pyav_result, config)

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    def test_probe_video_from_file(self):
        """
        Test the case when decoder probes a video file
        """
        for test_video, config in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_file(full_path)
            self.check_probe_result(probe_result, config)

    def test_probe_video_from_memory(self):
        """
        Test the case when decoder probes a video in memory
        """
        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = torch.ops.video_reader.probe_video_from_memory(video_tensor)
            self.check_probe_result(probe_result, config)

1188
1189
    def test_probe_video_from_memory_script(self):
        scripted_fun = torch.jit.script(io._probe_video_from_memory)
1190
1191
1192
1193
1194
1195
1196
        self.assertIsNotNone(scripted_fun)

        for test_video, config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)
            probe_result = scripted_fun(video_tensor)
            self.check_meta_result(probe_result, config)

1197
    @PY39_SKIP
1198
1199
1200
1201
1202
    def test_read_video_from_memory_scripted(self):
        """
        Test the case when video is already in memory, and decoder reads data in memory
        """
        # video related
1203
        width, height, min_dimension, max_dimension = 0, 0, 0, 0
1204
1205
1206
1207
1208
1209
1210
        video_start_pts, video_end_pts = 0, -1
        video_timebase_num, video_timebase_den = 0, 1
        # audio related
        samples, channels = 0, 0
        audio_start_pts, audio_end_pts = 0, -1
        audio_timebase_num, audio_timebase_den = 0, 1

1211
        scripted_fun = torch.jit.script(io._read_video_from_memory)
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
        self.assertIsNotNone(scripted_fun)

        for test_video, _config in test_videos.items():
            full_path, video_tensor = _get_video_tensor(VIDEO_DIR, test_video)

            # decode all frames using cpp decoder
            scripted_fun(
                video_tensor,
                seek_frame_margin,
                1,  # readVideoStream
                width,
                height,
                min_dimension,
1225
                max_dimension,
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
                [video_start_pts, video_end_pts],
                video_timebase_num,
                video_timebase_den,
                1,  # readAudioStream
                samples,
                channels,
                [audio_start_pts, audio_end_pts],
                audio_timebase_num,
                audio_timebase_den,
            )
            # FUTURE: check value of video / audio frames

1238
1239
1240
1241
1242
1243
1244
1245
1246
    def test_invalid_file(self):
        set_video_backend('video_reader')
        with self.assertRaises(RuntimeError):
            io.read_video('foo.mp4')

        set_video_backend('pyav')
        with self.assertRaises(RuntimeError):
            io.read_video('foo.mp4')

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
    def test_audio_present(self):
        """Test if audio frames are returned with video_reader backend."""
        set_video_backend('video_reader')
        for test_video, _ in test_videos.items():
            full_path = os.path.join(VIDEO_DIR, test_video)
            container = av.open(full_path)
            if container.streams.audio:
                _, audio, _ = io.read_video(full_path)
                self.assertGreaterEqual(audio.shape[0], 1)
                self.assertGreaterEqual(audio.shape[1], 1)

1258

1259
if __name__ == "__main__":
1260
    unittest.main()