mobilenetv2.py 5.87 KB
Newer Older
1
2
from functools import partial
from typing import Any, Optional, Union
3

4
5
from torch import Tensor
from torch import nn
6
from torch.ao.quantization import QuantStub, DeQuantStub
7
from torchvision.models.mobilenetv2 import InvertedResidual, MobileNetV2, MobileNet_V2_Weights
8

9
from ...ops.misc import Conv2dNormActivation
10
from ...transforms._presets import ImageClassification
11
12
13
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
14
from .utils import _fuse_modules, _replace_relu, quantize_model
15
16


17
18
19
20
21
__all__ = [
    "QuantizableMobileNetV2",
    "MobileNet_V2_QuantizedWeights",
    "mobilenet_v2",
]
22
23
24


class QuantizableInvertedResidual(InvertedResidual):
25
    def __init__(self, *args: Any, **kwargs: Any) -> None:
26
        super().__init__(*args, **kwargs)
27
28
        self.skip_add = nn.quantized.FloatFunctional()

29
    def forward(self, x: Tensor) -> Tensor:
30
31
32
33
34
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)

35
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
36
        for idx in range(len(self.conv)):
37
            if type(self.conv[idx]) is nn.Conv2d:
38
                _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True)
39
40
41


class QuantizableMobileNetV2(MobileNetV2):
42
    def __init__(self, *args: Any, **kwargs: Any) -> None:
43
44
45
46
47
48
        """
        MobileNet V2 main class

        Args:
           Inherits args from floating point MobileNetV2
        """
49
        super().__init__(*args, **kwargs)
50
51
52
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

53
    def forward(self, x: Tensor) -> Tensor:
54
55
56
57
58
        x = self.quant(x)
        x = self._forward_impl(x)
        x = self.dequant(x)
        return x

59
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
60
        for m in self.modules():
61
            if type(m) is Conv2dNormActivation:
62
                _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True)
63
            if type(m) is QuantizableInvertedResidual:
64
                m.fuse_model(is_qat)
65
66


67
68
69
70
71
72
73
74
75
76
77
class MobileNet_V2_QuantizedWeights(WeightsEnum):
    IMAGENET1K_QNNPACK_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "num_params": 3504872,
            "min_size": (1, 1),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "qnnpack",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
            "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1,
78
79
80
81
            "metrics": {
                "acc@1": 71.658,
                "acc@5": 90.150,
            },
82
83
84
85
            "_docs": """
                These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
                weights listed below.
            """,
86
87
88
89
90
91
92
93
94
95
96
97
98
        },
    )
    DEFAULT = IMAGENET1K_QNNPACK_V1


@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1
        if kwargs.get("quantize", False)
        else MobileNet_V2_Weights.IMAGENET1K_V1,
    )
)
99
def mobilenet_v2(
100
101
    *,
    weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None,
102
103
104
105
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableMobileNetV2:
106
107
    """
    Constructs a MobileNetV2 architecture from
108
    `MobileNetV2: Inverted Residuals and Linear Bottlenecks
109
110
    <https://arxiv.org/abs/1801.04381>`_.

111
112
113
114
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
115
116

    Args:
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        weights (:class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.MobileNet_V2_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.
        quantize (bool, optional): If True, returns a quantized version of the model. Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableMobileNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv2.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.quantization.MobileNet_V2_QuantizedWeights
        :members:
    .. autoclass:: torchvision.models.MobileNet_V2_Weights
        :members:
        :noindex:
133
    """
134
135
136
137
138
139
140
141
    weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights)

    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "qnnpack")

142
143
144
145
146
    model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs)
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

147
148
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
149
150

    return model
151
152
153
154
155
156
157
158
159
160
161
162


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..mobilenetv2 import model_urls  # noqa: F401


quant_model_urls = _ModelURLs(
    {
        "mobilenet_v2_qnnpack": MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1.url,
    }
)