"torch_cluster/graclus.py" did not exist on "6a01b87be9653b1105bbd363eed14a5d6af13e87"
googlenet.py 7.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import model_zoo

__all__ = ['GoogLeNet', 'googlenet']

model_urls = {
    # GoogLeNet ported from TensorFlow
    'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}


def googlenet(pretrained=False, **kwargs):
    r"""GoogLeNet (Inception v1) model architecture from
    `"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
ekka's avatar
ekka committed
17

18
19
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
20
        transform_input (bool): If True, preprocesses the input according to the method with which it
ekka's avatar
ekka committed
21
            was trained on ImageNet. Default: *False*
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    """
    if pretrained:
        if 'transform_input' not in kwargs:
            kwargs['transform_input'] = True
        kwargs['init_weights'] = False
        model = GoogLeNet(**kwargs)
        model.load_state_dict(model_zoo.load_url(model_urls['googlenet']))
        return model

    return GoogLeNet(**kwargs)


class GoogLeNet(nn.Module):

    def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        self.transform_input = transform_input

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
        if aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
            self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0.2)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)

90
        # N x 3 x 224 x 224
91
        x = self.conv1(x)
92
        # N x 64 x 112 x 112
93
        x = self.maxpool1(x)
94
        # N x 64 x 56 x 56
95
        x = self.conv2(x)
96
        # N x 64 x 56 x 56
97
        x = self.conv3(x)
98
        # N x 192 x 56 x 56
99
100
        x = self.maxpool2(x)

101
        # N x 192 x 28 x 28
102
        x = self.inception3a(x)
103
        # N x 256 x 28 x 28
104
        x = self.inception3b(x)
105
        # N x 480 x 28 x 28
106
        x = self.maxpool3(x)
107
        # N x 480 x 14 x 14
108
        x = self.inception4a(x)
109
        # N x 512 x 14 x 14
110
111
112
113
        if self.training and self.aux_logits:
            aux1 = self.aux1(x)

        x = self.inception4b(x)
114
        # N x 512 x 14 x 14
115
        x = self.inception4c(x)
116
        # N x 512 x 14 x 14
117
        x = self.inception4d(x)
118
        # N x 528 x 14 x 14
119
120
121
122
        if self.training and self.aux_logits:
            aux2 = self.aux2(x)

        x = self.inception4e(x)
123
        # N x 832 x 14 x 14
124
        x = self.maxpool4(x)
125
        # N x 832 x 7 x 7
126
        x = self.inception5a(x)
127
        # N x 832 x 7 x 7
128
        x = self.inception5b(x)
129
        # N x 1024 x 7 x 7
130
131

        x = self.avgpool(x)
132
        # N x 1024 x 1 x 1
133
        x = x.view(x.size(0), -1)
134
        # N x 1024
135
136
        x = self.dropout(x)
        x = self.fc(x)
137
        # N x 1000 (num_classes)
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        if self.training and self.aux_logits:
            return aux1, aux2, x
        return x


class Inception(nn.Module):

    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):

    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
185
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
186
        x = F.adaptive_avg_pool2d(x, (4, 4))
187
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
188
        x = self.conv(x)
189
        # N x 128 x 4 x 4
190
        x = x.view(x.size(0), -1)
191
        # N x 2048
192
        x = F.relu(self.fc1(x), inplace=True)
193
        # N x 2048
194
        x = F.dropout(x, 0.7, training=self.training)
195
        # N x 2048
196
        x = self.fc2(x)
197
        # N x 1024
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

        return x


class BasicConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)