regnet.py 38.6 KB
Newer Older
1
2
3
4
import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Tuple
5
6

import torch
7
8
from torch import nn, Tensor

9
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation
10
from ..transforms._presets import ImageClassification, InterpolationMode
11
from ..utils import _log_api_usage_once
12
13
14
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param, _make_divisible
15
16


17
18
__all__ = [
    "RegNet",
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    "RegNet_Y_400MF_Weights",
    "RegNet_Y_800MF_Weights",
    "RegNet_Y_1_6GF_Weights",
    "RegNet_Y_3_2GF_Weights",
    "RegNet_Y_8GF_Weights",
    "RegNet_Y_16GF_Weights",
    "RegNet_Y_32GF_Weights",
    "RegNet_Y_128GF_Weights",
    "RegNet_X_400MF_Weights",
    "RegNet_X_800MF_Weights",
    "RegNet_X_1_6GF_Weights",
    "RegNet_X_3_2GF_Weights",
    "RegNet_X_8GF_Weights",
    "RegNet_X_16GF_Weights",
    "RegNet_X_32GF_Weights",
34
35
36
37
38
39
40
    "regnet_y_400mf",
    "regnet_y_800mf",
    "regnet_y_1_6gf",
    "regnet_y_3_2gf",
    "regnet_y_8gf",
    "regnet_y_16gf",
    "regnet_y_32gf",
41
    "regnet_y_128gf",
42
43
44
45
46
47
48
49
    "regnet_x_400mf",
    "regnet_x_800mf",
    "regnet_x_1_6gf",
    "regnet_x_3_2gf",
    "regnet_x_8gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
]
50
51


52
class SimpleStemIN(Conv2dNormActivation):
53
54
55
56
57
58
59
60
61
    """Simple stem for ImageNet: 3x3, BN, ReLU."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
    ) -> None:
62
63
64
        super().__init__(
            width_in, width_out, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=activation_layer
        )
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


class BottleneckTransform(nn.Sequential):
    """Bottleneck transformation: 1x1, 3x3 [+SE], 1x1."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int,
        bottleneck_multiplier: float,
        se_ratio: Optional[float],
    ) -> None:
        layers: OrderedDict[str, nn.Module] = OrderedDict()
        w_b = int(round(width_out * bottleneck_multiplier))
        g = w_b // group_width

85
        layers["a"] = Conv2dNormActivation(
86
87
            width_in, w_b, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=activation_layer
        )
88
        layers["b"] = Conv2dNormActivation(
89
90
            w_b, w_b, kernel_size=3, stride=stride, groups=g, norm_layer=norm_layer, activation_layer=activation_layer
        )
91
92
93
94
95
96
97
98
99
100
101

        if se_ratio:
            # The SE reduction ratio is defined with respect to the
            # beginning of the block
            width_se_out = int(round(se_ratio * width_in))
            layers["se"] = SqueezeExcitation(
                input_channels=w_b,
                squeeze_channels=width_se_out,
                activation=activation_layer,
            )

102
        layers["c"] = Conv2dNormActivation(
103
104
            w_b, width_out, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=None
        )
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        super().__init__(layers)


class ResBottleneckBlock(nn.Module):
    """Residual bottleneck block: x + F(x), F = bottleneck transform."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int = 1,
        bottleneck_multiplier: float = 1.0,
        se_ratio: Optional[float] = None,
    ) -> None:
        super().__init__()

        # Use skip connection with projection if shape changes
        self.proj = None
        should_proj = (width_in != width_out) or (stride != 1)
        if should_proj:
128
            self.proj = Conv2dNormActivation(
129
130
                width_in, width_out, kernel_size=1, stride=stride, norm_layer=norm_layer, activation_layer=None
            )
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        self.f = BottleneckTransform(
            width_in,
            width_out,
            stride,
            norm_layer,
            activation_layer,
            group_width,
            bottleneck_multiplier,
            se_ratio,
        )
        self.activation = activation_layer(inplace=True)

    def forward(self, x: Tensor) -> Tensor:
        if self.proj is not None:
            x = self.proj(x) + self.f(x)
        else:
            x = x + self.f(x)
        return self.activation(x)


class AnyStage(nn.Sequential):
    """AnyNet stage (sequence of blocks w/ the same output shape)."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        depth: int,
        block_constructor: Callable[..., nn.Module],
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int,
        bottleneck_multiplier: float,
        se_ratio: Optional[float] = None,
        stage_index: int = 0,
    ) -> None:
        super().__init__()

        for i in range(depth):
            block = block_constructor(
                width_in if i == 0 else width_out,
                width_out,
                stride if i == 0 else 1,
                norm_layer,
                activation_layer,
                group_width,
                bottleneck_multiplier,
                se_ratio,
            )

            self.add_module(f"block{stage_index}-{i}", block)


class BlockParams:
    def __init__(
        self,
        depths: List[int],
        widths: List[int],
        group_widths: List[int],
        bottleneck_multipliers: List[float],
        strides: List[int],
        se_ratio: Optional[float] = None,
    ) -> None:
        self.depths = depths
        self.widths = widths
        self.group_widths = group_widths
        self.bottleneck_multipliers = bottleneck_multipliers
        self.strides = strides
        self.se_ratio = se_ratio

    @classmethod
    def from_init_params(
        cls,
        depth: int,
        w_0: int,
        w_a: float,
        w_m: float,
        group_width: int,
        bottleneck_multiplier: float = 1.0,
        se_ratio: Optional[float] = None,
        **kwargs: Any,
    ) -> "BlockParams":
        """
        Programatically compute all the per-block settings,
        given the RegNet parameters.

        The first step is to compute the quantized linear block parameters,
        in log space. Key parameters are:
        - `w_a` is the width progression slope
        - `w_0` is the initial width
        - `w_m` is the width stepping in the log space

        In other terms
        `log(block_width) = log(w_0) + w_m * block_capacity`,
        with `bock_capacity` ramping up following the w_0 and w_a params.
        This block width is finally quantized to multiples of 8.

        The second step is to compute the parameters per stage,
        taking into account the skip connection and the final 1x1 convolutions.
        We use the fact that the output width is constant within a stage.
        """

        QUANT = 8
        STRIDE = 2

        if w_a < 0 or w_0 <= 0 or w_m <= 1 or w_0 % 8 != 0:
            raise ValueError("Invalid RegNet settings")
        # Compute the block widths. Each stage has one unique block width
        widths_cont = torch.arange(depth) * w_a + w_0
        block_capacity = torch.round(torch.log(widths_cont / w_0) / math.log(w_m))
242
        block_widths = (torch.round(torch.divide(w_0 * torch.pow(w_m, block_capacity), QUANT)) * QUANT).int().tolist()
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        num_stages = len(set(block_widths))

        # Convert to per stage parameters
        split_helper = zip(
            block_widths + [0],
            [0] + block_widths,
            block_widths + [0],
            [0] + block_widths,
        )
        splits = [w != wp or r != rp for w, wp, r, rp in split_helper]

        stage_widths = [w for w, t in zip(block_widths, splits[:-1]) if t]
        stage_depths = torch.diff(torch.tensor([d for d, t in enumerate(splits) if t])).int().tolist()

        strides = [STRIDE] * num_stages
        bottleneck_multipliers = [bottleneck_multiplier] * num_stages
        group_widths = [group_width] * num_stages

        # Adjust the compatibility of stage widths and group widths
        stage_widths, group_widths = cls._adjust_widths_groups_compatibilty(
            stage_widths, bottleneck_multipliers, group_widths
        )

        return cls(
            depths=stage_depths,
            widths=stage_widths,
            group_widths=group_widths,
            bottleneck_multipliers=bottleneck_multipliers,
            strides=strides,
            se_ratio=se_ratio,
        )

    def _get_expanded_params(self):
276
        return zip(self.widths, self.strides, self.depths, self.group_widths, self.bottleneck_multipliers)
277
278
279

    @staticmethod
    def _adjust_widths_groups_compatibilty(
280
281
        stage_widths: List[int], bottleneck_ratios: List[float], group_widths: List[int]
    ) -> Tuple[List[int], List[int]]:
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        """
        Adjusts the compatibility of widths and groups,
        depending on the bottleneck ratio.
        """
        # Compute all widths for the current settings
        widths = [int(w * b) for w, b in zip(stage_widths, bottleneck_ratios)]
        group_widths_min = [min(g, w_bot) for g, w_bot in zip(group_widths, widths)]

        # Compute the adjusted widths so that stage and group widths fit
        ws_bot = [_make_divisible(w_bot, g) for w_bot, g in zip(widths, group_widths_min)]
        stage_widths = [int(w_bot / b) for w_bot, b in zip(ws_bot, bottleneck_ratios)]
        return stage_widths, group_widths_min


class RegNet(nn.Module):
    def __init__(
        self,
        block_params: BlockParams,
        num_classes: int = 1000,
        stem_width: int = 32,
        stem_type: Optional[Callable[..., nn.Module]] = None,
        block_type: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        activation: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
308
        _log_api_usage_once(self)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

        if stem_type is None:
            stem_type = SimpleStemIN
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if block_type is None:
            block_type = ResBottleneckBlock
        if activation is None:
            activation = nn.ReLU

        # Ad hoc stem
        self.stem = stem_type(
            3,  # width_in
            stem_width,
            norm_layer,
            activation,
        )

        current_width = stem_width

        blocks = []
        for i, (
            width_out,
            stride,
            depth,
            group_width,
            bottleneck_multiplier,
        ) in enumerate(block_params._get_expanded_params()):
            blocks.append(
                (
                    f"block{i+1}",
                    AnyStage(
                        current_width,
                        width_out,
                        stride,
                        depth,
                        block_type,
                        norm_layer,
                        activation,
                        group_width,
                        bottleneck_multiplier,
                        block_params.se_ratio,
                        stage_index=i + 1,
                    ),
                )
            )

            current_width = width_out

        self.trunk_output = nn.Sequential(OrderedDict(blocks))

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(in_features=current_width, out_features=num_classes)

        # Performs ResNet-style weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # Note that there is no bias due to BN
                fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                nn.init.normal_(m.weight, mean=0.0, std=math.sqrt(2.0 / fan_out))
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, mean=0.0, std=0.01)
                nn.init.zeros_(m.bias)

376
377
378
379
380
381
382
383
384
385
    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        x = self.trunk_output(x)

        x = self.avgpool(x)
        x = x.flatten(start_dim=1)
        x = self.fc(x)

        return x

386

387
388
389
390
391
392
393
394
395
def _regnet(
    block_params: BlockParams,
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> RegNet:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

396
397
    norm_layer = kwargs.pop("norm_layer", partial(nn.BatchNorm2d, eps=1e-05, momentum=0.1))
    model = RegNet(block_params, norm_layer=norm_layer, **kwargs)
398
399
400
401

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

402
403
404
    return model


405
406
407
408
409
410
411
412
413
414
_COMMON_META = {
    "task": "image_classification",
    "architecture": "RegNet",
    "publication_year": 2020,
    "size": (224, 224),
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
}

415
416
417
418
419
420
421
422
423
_COMMON_SWAG_META = {
    **_COMMON_META,
    "publication_year": 2022,
    "size": (384, 384),
    "recipe": "https://github.com/facebookresearch/SWAG",
    "license": "https://github.com/facebookresearch/SWAG/blob/main/LICENSE",
    "interpolation": InterpolationMode.BICUBIC,
}

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

class RegNet_Y_400MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_400mf-c65dace8.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 4344144,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 74.046,
            "acc@5": 91.716,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_400mf-e6988f5f.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 4344144,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 75.804,
            "acc@5": 92.742,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_800MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_800mf-1b27b58c.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 6432512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 76.420,
            "acc@5": 93.136,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_800mf-58fc7688.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 6432512,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 78.828,
            "acc@5": 94.502,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_1_6GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_1_6gf-b11a554e.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11202430,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 77.950,
            "acc@5": 93.966,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_1_6gf-0d7bc02a.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 11202430,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 80.876,
            "acc@5": 95.444,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_3_2GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_3_2gf-b5a9779c.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 19436338,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 78.948,
            "acc@5": 94.576,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_3_2gf-9180c971.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 19436338,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.982,
            "acc@5": 95.972,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_8GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_8gf-d0d0e4a8.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 39381472,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 80.032,
            "acc@5": 95.048,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_8gf-dc2b1b54.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 39381472,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.828,
            "acc@5": 96.330,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_16GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_16gf-9e6ed7dd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 83590140,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models",
            "acc@1": 80.424,
            "acc@5": 95.240,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_16gf-3e4a00f9.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 83590140,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.886,
            "acc@5": 96.328,
        },
    )
578
579
580
581
582
583
584
585
586
587
588
589
    IMAGENET1K_SWAG_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_16gf_swag-43afe44d.pth",
        transforms=partial(
            ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 83590140,
            "acc@1": 86.012,
            "acc@5": 98.054,
        },
    )
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_32GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_32gf-4dee3f7a.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 145046770,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models",
            "acc@1": 80.878,
            "acc@5": 95.340,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_y_32gf-8db6d4b5.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 145046770,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 83.368,
            "acc@5": 96.498,
        },
    )
616
617
618
619
620
621
622
623
624
625
626
627
    IMAGENET1K_SWAG_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_32gf_swag-04fdfa75.pth",
        transforms=partial(
            ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 145046770,
            "acc@1": 86.838,
            "acc@5": 98.362,
        },
    )
628
629
630
631
    DEFAULT = IMAGENET1K_V2


class RegNet_Y_128GF_Weights(WeightsEnum):
632
633
634
635
636
637
638
639
640
641
642
643
644
    IMAGENET1K_SWAG_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_y_128gf_swag-c8ce3e52.pth",
        transforms=partial(
            ImageClassification, crop_size=384, resize_size=384, interpolation=InterpolationMode.BICUBIC
        ),
        meta={
            **_COMMON_SWAG_META,
            "num_params": 644812894,
            "acc@1": 88.228,
            "acc@5": 98.682,
        },
    )
    DEFAULT = IMAGENET1K_SWAG_V1
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830


class RegNet_X_400MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_400mf-adf1edd5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 5495976,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 72.834,
            "acc@5": 90.950,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_400mf-62229a5f.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 5495976,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 74.864,
            "acc@5": 92.322,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_800MF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_800mf-ad17e45c.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 7259656,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 75.212,
            "acc@5": 92.348,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_800mf-94a99ebd.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 7259656,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 77.522,
            "acc@5": 93.826,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_1_6GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_1_6gf-e3633e7f.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 9190136,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#small-models",
            "acc@1": 77.040,
            "acc@5": 93.440,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_1_6gf-a12f2b72.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 9190136,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 79.668,
            "acc@5": 94.922,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_3_2GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_3_2gf-f342aeae.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 15296552,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 78.364,
            "acc@5": 93.992,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_3_2gf-7071aa85.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 15296552,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.196,
            "acc@5": 95.430,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_8GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_8gf-03ceed89.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 39572648,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 79.344,
            "acc@5": 94.686,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_8gf-2b70d774.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 39572648,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.682,
            "acc@5": 95.678,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_16GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_16gf-2007eb11.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 54278536,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#medium-models",
            "acc@1": 80.058,
            "acc@5": 94.944,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_16gf-ba3796d7.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 54278536,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.716,
            "acc@5": 96.196,
        },
    )
    DEFAULT = IMAGENET1K_V2


class RegNet_X_32GF_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/regnet_x_32gf-9d47f8d0.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 107811560,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#large-models",
            "acc@1": 80.622,
            "acc@5": 95.248,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/regnet_x_32gf-6eb8fdc6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 107811560,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 83.014,
            "acc@5": 96.288,
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", RegNet_Y_400MF_Weights.IMAGENET1K_V1))
def regnet_y_400mf(*, weights: Optional[RegNet_Y_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
831
832
833
834
835
    """
    Constructs a RegNetY_400MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
836
        weights (RegNet_Y_400MF_Weights, optional): The pretrained weights for the model
837
838
        progress (bool): If True, displays a progress bar of the download to stderr
    """
839
840
    weights = RegNet_Y_400MF_Weights.verify(weights)

841
    params = BlockParams.from_init_params(depth=16, w_0=48, w_a=27.89, w_m=2.09, group_width=8, se_ratio=0.25, **kwargs)
842
    return _regnet(params, weights, progress, **kwargs)
843
844


845
846
@handle_legacy_interface(weights=("pretrained", RegNet_Y_800MF_Weights.IMAGENET1K_V1))
def regnet_y_800mf(*, weights: Optional[RegNet_Y_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
847
848
849
850
851
    """
    Constructs a RegNetY_800MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
852
        weights (RegNet_Y_800MF_Weights, optional): The pretrained weights for the model
853
854
        progress (bool): If True, displays a progress bar of the download to stderr
    """
855
856
    weights = RegNet_Y_800MF_Weights.verify(weights)

857
    params = BlockParams.from_init_params(depth=14, w_0=56, w_a=38.84, w_m=2.4, group_width=16, se_ratio=0.25, **kwargs)
858
    return _regnet(params, weights, progress, **kwargs)
859
860


861
862
@handle_legacy_interface(weights=("pretrained", RegNet_Y_1_6GF_Weights.IMAGENET1K_V1))
def regnet_y_1_6gf(*, weights: Optional[RegNet_Y_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
863
864
865
866
867
    """
    Constructs a RegNetY_1.6GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
868
        weights (RegNet_Y_1_6GF_Weights, optional): The pretrained weights for the model
869
870
        progress (bool): If True, displays a progress bar of the download to stderr
    """
871
872
    weights = RegNet_Y_1_6GF_Weights.verify(weights)

873
874
875
    params = BlockParams.from_init_params(
        depth=27, w_0=48, w_a=20.71, w_m=2.65, group_width=24, se_ratio=0.25, **kwargs
    )
876
    return _regnet(params, weights, progress, **kwargs)
877
878


879
880
@handle_legacy_interface(weights=("pretrained", RegNet_Y_3_2GF_Weights.IMAGENET1K_V1))
def regnet_y_3_2gf(*, weights: Optional[RegNet_Y_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
881
882
883
884
885
    """
    Constructs a RegNetY_3.2GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
886
        weights (RegNet_Y_3_2GF_Weights, optional): The pretrained weights for the model
887
888
        progress (bool): If True, displays a progress bar of the download to stderr
    """
889
890
    weights = RegNet_Y_3_2GF_Weights.verify(weights)

891
892
893
    params = BlockParams.from_init_params(
        depth=21, w_0=80, w_a=42.63, w_m=2.66, group_width=24, se_ratio=0.25, **kwargs
    )
894
    return _regnet(params, weights, progress, **kwargs)
895
896


897
898
@handle_legacy_interface(weights=("pretrained", RegNet_Y_8GF_Weights.IMAGENET1K_V1))
def regnet_y_8gf(*, weights: Optional[RegNet_Y_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
899
900
901
902
903
    """
    Constructs a RegNetY_8GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
904
        weights (RegNet_Y_8GF_Weights, optional): The pretrained weights for the model
905
906
        progress (bool): If True, displays a progress bar of the download to stderr
    """
907
908
    weights = RegNet_Y_8GF_Weights.verify(weights)

909
910
911
    params = BlockParams.from_init_params(
        depth=17, w_0=192, w_a=76.82, w_m=2.19, group_width=56, se_ratio=0.25, **kwargs
    )
912
    return _regnet(params, weights, progress, **kwargs)
913
914


915
916
@handle_legacy_interface(weights=("pretrained", RegNet_Y_16GF_Weights.IMAGENET1K_V1))
def regnet_y_16gf(*, weights: Optional[RegNet_Y_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
917
918
919
920
921
    """
    Constructs a RegNetY_16GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
922
        weights (RegNet_Y_16GF_Weights, optional): The pretrained weights for the model
923
924
        progress (bool): If True, displays a progress bar of the download to stderr
    """
925
926
    weights = RegNet_Y_16GF_Weights.verify(weights)

927
928
929
    params = BlockParams.from_init_params(
        depth=18, w_0=200, w_a=106.23, w_m=2.48, group_width=112, se_ratio=0.25, **kwargs
    )
930
    return _regnet(params, weights, progress, **kwargs)
931
932


933
934
@handle_legacy_interface(weights=("pretrained", RegNet_Y_32GF_Weights.IMAGENET1K_V1))
def regnet_y_32gf(*, weights: Optional[RegNet_Y_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
935
936
937
938
939
    """
    Constructs a RegNetY_32GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
940
        weights (RegNet_Y_32GF_Weights, optional): The pretrained weights for the model
941
942
        progress (bool): If True, displays a progress bar of the download to stderr
    """
943
944
    weights = RegNet_Y_32GF_Weights.verify(weights)

945
946
947
    params = BlockParams.from_init_params(
        depth=20, w_0=232, w_a=115.89, w_m=2.53, group_width=232, se_ratio=0.25, **kwargs
    )
948
    return _regnet(params, weights, progress, **kwargs)
949
950


951
952
@handle_legacy_interface(weights=("pretrained", None))
def regnet_y_128gf(*, weights: Optional[RegNet_Y_128GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
953
954
955
956
    """
    Constructs a RegNetY_128GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.
    NOTE: Pretrained weights are not available for this model.
957
958
959
960

    Args:
        weights (RegNet_Y_128GF_Weights, optional): The pretrained weights for the model
        progress (bool): If True, displays a progress bar of the download to stderr
961
    """
962
963
    weights = RegNet_Y_128GF_Weights.verify(weights)

964
965
966
    params = BlockParams.from_init_params(
        depth=27, w_0=456, w_a=160.83, w_m=2.52, group_width=264, se_ratio=0.25, **kwargs
    )
967
    return _regnet(params, weights, progress, **kwargs)
968
969


970
971
@handle_legacy_interface(weights=("pretrained", RegNet_X_400MF_Weights.IMAGENET1K_V1))
def regnet_x_400mf(*, weights: Optional[RegNet_X_400MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
972
973
974
975
976
    """
    Constructs a RegNetX_400MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
977
        weights (RegNet_X_400MF_Weights, optional): The pretrained weights for the model
978
979
        progress (bool): If True, displays a progress bar of the download to stderr
    """
980
981
    weights = RegNet_X_400MF_Weights.verify(weights)

982
    params = BlockParams.from_init_params(depth=22, w_0=24, w_a=24.48, w_m=2.54, group_width=16, **kwargs)
983
    return _regnet(params, weights, progress, **kwargs)
984
985


986
987
@handle_legacy_interface(weights=("pretrained", RegNet_X_800MF_Weights.IMAGENET1K_V1))
def regnet_x_800mf(*, weights: Optional[RegNet_X_800MF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
988
989
990
991
992
    """
    Constructs a RegNetX_800MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
993
        weights (RegNet_X_800MF_Weights, optional): The pretrained weights for the model
994
995
        progress (bool): If True, displays a progress bar of the download to stderr
    """
996
997
    weights = RegNet_X_800MF_Weights.verify(weights)

998
    params = BlockParams.from_init_params(depth=16, w_0=56, w_a=35.73, w_m=2.28, group_width=16, **kwargs)
999
    return _regnet(params, weights, progress, **kwargs)
1000
1001


1002
1003
@handle_legacy_interface(weights=("pretrained", RegNet_X_1_6GF_Weights.IMAGENET1K_V1))
def regnet_x_1_6gf(*, weights: Optional[RegNet_X_1_6GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1004
1005
1006
1007
1008
    """
    Constructs a RegNetX_1.6GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1009
        weights (RegNet_X_1_6GF_Weights, optional): The pretrained weights for the model
1010
1011
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1012
1013
    weights = RegNet_X_1_6GF_Weights.verify(weights)

1014
    params = BlockParams.from_init_params(depth=18, w_0=80, w_a=34.01, w_m=2.25, group_width=24, **kwargs)
1015
    return _regnet(params, weights, progress, **kwargs)
1016
1017


1018
1019
@handle_legacy_interface(weights=("pretrained", RegNet_X_3_2GF_Weights.IMAGENET1K_V1))
def regnet_x_3_2gf(*, weights: Optional[RegNet_X_3_2GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1020
1021
1022
1023
1024
    """
    Constructs a RegNetX_3.2GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1025
        weights (RegNet_X_3_2GF_Weights, optional): The pretrained weights for the model
1026
1027
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1028
1029
    weights = RegNet_X_3_2GF_Weights.verify(weights)

1030
    params = BlockParams.from_init_params(depth=25, w_0=88, w_a=26.31, w_m=2.25, group_width=48, **kwargs)
1031
    return _regnet(params, weights, progress, **kwargs)
1032
1033


1034
1035
@handle_legacy_interface(weights=("pretrained", RegNet_X_8GF_Weights.IMAGENET1K_V1))
def regnet_x_8gf(*, weights: Optional[RegNet_X_8GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1036
1037
1038
1039
1040
    """
    Constructs a RegNetX_8GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1041
        weights (RegNet_X_8GF_Weights, optional): The pretrained weights for the model
1042
1043
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1044
1045
    weights = RegNet_X_8GF_Weights.verify(weights)

1046
    params = BlockParams.from_init_params(depth=23, w_0=80, w_a=49.56, w_m=2.88, group_width=120, **kwargs)
1047
    return _regnet(params, weights, progress, **kwargs)
1048
1049


1050
1051
@handle_legacy_interface(weights=("pretrained", RegNet_X_16GF_Weights.IMAGENET1K_V1))
def regnet_x_16gf(*, weights: Optional[RegNet_X_16GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1052
1053
1054
1055
1056
    """
    Constructs a RegNetX_16GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1057
        weights (RegNet_X_16GF_Weights, optional): The pretrained weights for the model
1058
1059
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1060
1061
    weights = RegNet_X_16GF_Weights.verify(weights)

1062
    params = BlockParams.from_init_params(depth=22, w_0=216, w_a=55.59, w_m=2.1, group_width=128, **kwargs)
1063
    return _regnet(params, weights, progress, **kwargs)
1064
1065


1066
1067
@handle_legacy_interface(weights=("pretrained", RegNet_X_32GF_Weights.IMAGENET1K_V1))
def regnet_x_32gf(*, weights: Optional[RegNet_X_32GF_Weights] = None, progress: bool = True, **kwargs: Any) -> RegNet:
1068
1069
1070
1071
1072
    """
    Constructs a RegNetX_32GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
1073
        weights (RegNet_X_32GF_Weights, optional): The pretrained weights for the model
1074
1075
        progress (bool): If True, displays a progress bar of the download to stderr
    """
1076
    weights = RegNet_X_32GF_Weights.verify(weights)
1077

1078
1079
    params = BlockParams.from_init_params(depth=23, w_0=320, w_a=69.86, w_m=2.0, group_width=168, **kwargs)
    return _regnet(params, weights, progress, **kwargs)