regnet.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Modified from
# https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/anynet.py
# https://github.com/facebookresearch/ClassyVision/blob/main/classy_vision/models/regnet.py


import math
from collections import OrderedDict
from functools import partial
from typing import Any, Callable, List, Optional, Tuple
10
11

import torch
12
13
14
from torch import nn, Tensor

from .._internally_replaced_utils import load_state_dict_from_url
15
from ..ops.misc import ConvNormActivation, SqueezeExcitation
16
from ..utils import _log_api_usage_once
17
from ._utils import _make_divisible
18
19


20
21
22
23
24
25
26
27
28
__all__ = [
    "RegNet",
    "regnet_y_400mf",
    "regnet_y_800mf",
    "regnet_y_1_6gf",
    "regnet_y_3_2gf",
    "regnet_y_8gf",
    "regnet_y_16gf",
    "regnet_y_32gf",
29
    "regnet_y_128gf",
30
31
32
33
34
35
36
37
    "regnet_x_400mf",
    "regnet_x_800mf",
    "regnet_x_1_6gf",
    "regnet_x_3_2gf",
    "regnet_x_8gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
]
38
39
40


model_urls = {
41
    "regnet_y_400mf": "https://download.pytorch.org/models/regnet_y_400mf-c65dace8.pth",
42
    "regnet_y_800mf": "https://download.pytorch.org/models/regnet_y_800mf-1b27b58c.pth",
43
44
45
46
47
    "regnet_y_1_6gf": "https://download.pytorch.org/models/regnet_y_1_6gf-b11a554e.pth",
    "regnet_y_3_2gf": "https://download.pytorch.org/models/regnet_y_3_2gf-b5a9779c.pth",
    "regnet_y_8gf": "https://download.pytorch.org/models/regnet_y_8gf-d0d0e4a8.pth",
    "regnet_y_16gf": "https://download.pytorch.org/models/regnet_y_16gf-9e6ed7dd.pth",
    "regnet_y_32gf": "https://download.pytorch.org/models/regnet_y_32gf-4dee3f7a.pth",
48
    "regnet_x_400mf": "https://download.pytorch.org/models/regnet_x_400mf-adf1edd5.pth",
49
50
51
52
53
54
    "regnet_x_800mf": "https://download.pytorch.org/models/regnet_x_800mf-ad17e45c.pth",
    "regnet_x_1_6gf": "https://download.pytorch.org/models/regnet_x_1_6gf-e3633e7f.pth",
    "regnet_x_3_2gf": "https://download.pytorch.org/models/regnet_x_3_2gf-f342aeae.pth",
    "regnet_x_8gf": "https://download.pytorch.org/models/regnet_x_8gf-03ceed89.pth",
    "regnet_x_16gf": "https://download.pytorch.org/models/regnet_x_16gf-2007eb11.pth",
    "regnet_x_32gf": "https://download.pytorch.org/models/regnet_x_32gf-9d47f8d0.pth",
55
56
57
}


58
class SimpleStemIN(ConvNormActivation):
59
60
61
62
63
64
65
66
67
    """Simple stem for ImageNet: 3x3, BN, ReLU."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
    ) -> None:
68
69
70
        super().__init__(
            width_in, width_out, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=activation_layer
        )
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


class BottleneckTransform(nn.Sequential):
    """Bottleneck transformation: 1x1, 3x3 [+SE], 1x1."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int,
        bottleneck_multiplier: float,
        se_ratio: Optional[float],
    ) -> None:
        layers: OrderedDict[str, nn.Module] = OrderedDict()
        w_b = int(round(width_out * bottleneck_multiplier))
        g = w_b // group_width

91
92
93
94
95
96
        layers["a"] = ConvNormActivation(
            width_in, w_b, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=activation_layer
        )
        layers["b"] = ConvNormActivation(
            w_b, w_b, kernel_size=3, stride=stride, groups=g, norm_layer=norm_layer, activation_layer=activation_layer
        )
97
98
99
100
101
102
103
104
105
106
107

        if se_ratio:
            # The SE reduction ratio is defined with respect to the
            # beginning of the block
            width_se_out = int(round(se_ratio * width_in))
            layers["se"] = SqueezeExcitation(
                input_channels=w_b,
                squeeze_channels=width_se_out,
                activation=activation_layer,
            )

108
109
110
        layers["c"] = ConvNormActivation(
            w_b, width_out, kernel_size=1, stride=1, norm_layer=norm_layer, activation_layer=None
        )
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        super().__init__(layers)


class ResBottleneckBlock(nn.Module):
    """Residual bottleneck block: x + F(x), F = bottleneck transform."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int = 1,
        bottleneck_multiplier: float = 1.0,
        se_ratio: Optional[float] = None,
    ) -> None:
        super().__init__()

        # Use skip connection with projection if shape changes
        self.proj = None
        should_proj = (width_in != width_out) or (stride != 1)
        if should_proj:
134
135
136
            self.proj = ConvNormActivation(
                width_in, width_out, kernel_size=1, stride=stride, norm_layer=norm_layer, activation_layer=None
            )
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        self.f = BottleneckTransform(
            width_in,
            width_out,
            stride,
            norm_layer,
            activation_layer,
            group_width,
            bottleneck_multiplier,
            se_ratio,
        )
        self.activation = activation_layer(inplace=True)

    def forward(self, x: Tensor) -> Tensor:
        if self.proj is not None:
            x = self.proj(x) + self.f(x)
        else:
            x = x + self.f(x)
        return self.activation(x)


class AnyStage(nn.Sequential):
    """AnyNet stage (sequence of blocks w/ the same output shape)."""

    def __init__(
        self,
        width_in: int,
        width_out: int,
        stride: int,
        depth: int,
        block_constructor: Callable[..., nn.Module],
        norm_layer: Callable[..., nn.Module],
        activation_layer: Callable[..., nn.Module],
        group_width: int,
        bottleneck_multiplier: float,
        se_ratio: Optional[float] = None,
        stage_index: int = 0,
    ) -> None:
        super().__init__()

        for i in range(depth):
            block = block_constructor(
                width_in if i == 0 else width_out,
                width_out,
                stride if i == 0 else 1,
                norm_layer,
                activation_layer,
                group_width,
                bottleneck_multiplier,
                se_ratio,
            )

            self.add_module(f"block{stage_index}-{i}", block)


class BlockParams:
    def __init__(
        self,
        depths: List[int],
        widths: List[int],
        group_widths: List[int],
        bottleneck_multipliers: List[float],
        strides: List[int],
        se_ratio: Optional[float] = None,
    ) -> None:
        self.depths = depths
        self.widths = widths
        self.group_widths = group_widths
        self.bottleneck_multipliers = bottleneck_multipliers
        self.strides = strides
        self.se_ratio = se_ratio

    @classmethod
    def from_init_params(
        cls,
        depth: int,
        w_0: int,
        w_a: float,
        w_m: float,
        group_width: int,
        bottleneck_multiplier: float = 1.0,
        se_ratio: Optional[float] = None,
        **kwargs: Any,
    ) -> "BlockParams":
        """
        Programatically compute all the per-block settings,
        given the RegNet parameters.

        The first step is to compute the quantized linear block parameters,
        in log space. Key parameters are:
        - `w_a` is the width progression slope
        - `w_0` is the initial width
        - `w_m` is the width stepping in the log space

        In other terms
        `log(block_width) = log(w_0) + w_m * block_capacity`,
        with `bock_capacity` ramping up following the w_0 and w_a params.
        This block width is finally quantized to multiples of 8.

        The second step is to compute the parameters per stage,
        taking into account the skip connection and the final 1x1 convolutions.
        We use the fact that the output width is constant within a stage.
        """

        QUANT = 8
        STRIDE = 2

        if w_a < 0 or w_0 <= 0 or w_m <= 1 or w_0 % 8 != 0:
            raise ValueError("Invalid RegNet settings")
        # Compute the block widths. Each stage has one unique block width
        widths_cont = torch.arange(depth) * w_a + w_0
        block_capacity = torch.round(torch.log(widths_cont / w_0) / math.log(w_m))
248
        block_widths = (torch.round(torch.divide(w_0 * torch.pow(w_m, block_capacity), QUANT)) * QUANT).int().tolist()
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        num_stages = len(set(block_widths))

        # Convert to per stage parameters
        split_helper = zip(
            block_widths + [0],
            [0] + block_widths,
            block_widths + [0],
            [0] + block_widths,
        )
        splits = [w != wp or r != rp for w, wp, r, rp in split_helper]

        stage_widths = [w for w, t in zip(block_widths, splits[:-1]) if t]
        stage_depths = torch.diff(torch.tensor([d for d, t in enumerate(splits) if t])).int().tolist()

        strides = [STRIDE] * num_stages
        bottleneck_multipliers = [bottleneck_multiplier] * num_stages
        group_widths = [group_width] * num_stages

        # Adjust the compatibility of stage widths and group widths
        stage_widths, group_widths = cls._adjust_widths_groups_compatibilty(
            stage_widths, bottleneck_multipliers, group_widths
        )

        return cls(
            depths=stage_depths,
            widths=stage_widths,
            group_widths=group_widths,
            bottleneck_multipliers=bottleneck_multipliers,
            strides=strides,
            se_ratio=se_ratio,
        )

    def _get_expanded_params(self):
282
        return zip(self.widths, self.strides, self.depths, self.group_widths, self.bottleneck_multipliers)
283
284
285

    @staticmethod
    def _adjust_widths_groups_compatibilty(
286
287
        stage_widths: List[int], bottleneck_ratios: List[float], group_widths: List[int]
    ) -> Tuple[List[int], List[int]]:
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        """
        Adjusts the compatibility of widths and groups,
        depending on the bottleneck ratio.
        """
        # Compute all widths for the current settings
        widths = [int(w * b) for w, b in zip(stage_widths, bottleneck_ratios)]
        group_widths_min = [min(g, w_bot) for g, w_bot in zip(group_widths, widths)]

        # Compute the adjusted widths so that stage and group widths fit
        ws_bot = [_make_divisible(w_bot, g) for w_bot, g in zip(widths, group_widths_min)]
        stage_widths = [int(w_bot / b) for w_bot, b in zip(ws_bot, bottleneck_ratios)]
        return stage_widths, group_widths_min


class RegNet(nn.Module):
    def __init__(
        self,
        block_params: BlockParams,
        num_classes: int = 1000,
        stem_width: int = 32,
        stem_type: Optional[Callable[..., nn.Module]] = None,
        block_type: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        activation: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
314
        _log_api_usage_once(self)
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

        if stem_type is None:
            stem_type = SimpleStemIN
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if block_type is None:
            block_type = ResBottleneckBlock
        if activation is None:
            activation = nn.ReLU

        # Ad hoc stem
        self.stem = stem_type(
            3,  # width_in
            stem_width,
            norm_layer,
            activation,
        )

        current_width = stem_width

        blocks = []
        for i, (
            width_out,
            stride,
            depth,
            group_width,
            bottleneck_multiplier,
        ) in enumerate(block_params._get_expanded_params()):
            blocks.append(
                (
                    f"block{i+1}",
                    AnyStage(
                        current_width,
                        width_out,
                        stride,
                        depth,
                        block_type,
                        norm_layer,
                        activation,
                        group_width,
                        bottleneck_multiplier,
                        block_params.se_ratio,
                        stage_index=i + 1,
                    ),
                )
            )

            current_width = width_out

        self.trunk_output = nn.Sequential(OrderedDict(blocks))

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(in_features=current_width, out_features=num_classes)

        # Performs ResNet-style weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # Note that there is no bias due to BN
                fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                nn.init.normal_(m.weight, mean=0.0, std=math.sqrt(2.0 / fan_out))
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, mean=0.0, std=0.01)
                nn.init.zeros_(m.bias)

382
383
384
385
386
387
388
389
390
391
    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        x = self.trunk_output(x)

        x = self.avgpool(x)
        x = x.flatten(start_dim=1)
        x = self.fc(x)

        return x

392
393

def _regnet(arch: str, block_params: BlockParams, pretrained: bool, progress: bool, **kwargs: Any) -> RegNet:
394
395
    norm_layer = kwargs.pop("norm_layer", partial(nn.BatchNorm2d, eps=1e-05, momentum=0.1))
    model = RegNet(block_params, norm_layer=norm_layer, **kwargs)
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    if pretrained:
        if arch not in model_urls:
            raise ValueError(f"No checkpoint is available for model type {arch}")
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        model.load_state_dict(state_dict)
    return model


def regnet_y_400mf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_400MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
413
    params = BlockParams.from_init_params(depth=16, w_0=48, w_a=27.89, w_m=2.09, group_width=8, se_ratio=0.25, **kwargs)
414
415
416
417
418
419
420
421
422
423
424
425
    return _regnet("regnet_y_400mf", params, pretrained, progress, **kwargs)


def regnet_y_800mf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_800MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
426
    params = BlockParams.from_init_params(depth=14, w_0=56, w_a=38.84, w_m=2.4, group_width=16, se_ratio=0.25, **kwargs)
427
428
429
430
431
432
433
434
435
436
437
438
    return _regnet("regnet_y_800mf", params, pretrained, progress, **kwargs)


def regnet_y_1_6gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_1.6GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
439
440
441
    params = BlockParams.from_init_params(
        depth=27, w_0=48, w_a=20.71, w_m=2.65, group_width=24, se_ratio=0.25, **kwargs
    )
442
443
444
445
446
447
448
449
450
451
452
453
    return _regnet("regnet_y_1_6gf", params, pretrained, progress, **kwargs)


def regnet_y_3_2gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_3.2GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
454
455
456
    params = BlockParams.from_init_params(
        depth=21, w_0=80, w_a=42.63, w_m=2.66, group_width=24, se_ratio=0.25, **kwargs
    )
457
458
459
460
461
462
463
464
465
466
467
468
    return _regnet("regnet_y_3_2gf", params, pretrained, progress, **kwargs)


def regnet_y_8gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_8GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
469
470
471
    params = BlockParams.from_init_params(
        depth=17, w_0=192, w_a=76.82, w_m=2.19, group_width=56, se_ratio=0.25, **kwargs
    )
472
473
474
475
476
477
478
479
480
481
482
483
    return _regnet("regnet_y_8gf", params, pretrained, progress, **kwargs)


def regnet_y_16gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_16GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
484
485
486
    params = BlockParams.from_init_params(
        depth=18, w_0=200, w_a=106.23, w_m=2.48, group_width=112, se_ratio=0.25, **kwargs
    )
487
488
489
490
491
492
493
494
495
496
497
498
    return _regnet("regnet_y_16gf", params, pretrained, progress, **kwargs)


def regnet_y_32gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_32GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
499
500
501
    params = BlockParams.from_init_params(
        depth=20, w_0=232, w_a=115.89, w_m=2.53, group_width=232, se_ratio=0.25, **kwargs
    )
502
503
504
    return _regnet("regnet_y_32gf", params, pretrained, progress, **kwargs)


505
506
507
508
509
510
511
512
513
514
515
516
def regnet_y_128gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetY_128GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.
    NOTE: Pretrained weights are not available for this model.
    """
    params = BlockParams.from_init_params(
        depth=27, w_0=456, w_a=160.83, w_m=2.52, group_width=264, se_ratio=0.25, **kwargs
    )
    return _regnet("regnet_y_128gf", params, pretrained, progress, **kwargs)


517
518
519
520
521
522
523
524
525
def regnet_x_400mf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_400MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
526
    params = BlockParams.from_init_params(depth=22, w_0=24, w_a=24.48, w_m=2.54, group_width=16, **kwargs)
527
528
529
530
531
532
533
534
535
536
537
538
    return _regnet("regnet_x_400mf", params, pretrained, progress, **kwargs)


def regnet_x_800mf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_800MF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
539
    params = BlockParams.from_init_params(depth=16, w_0=56, w_a=35.73, w_m=2.28, group_width=16, **kwargs)
540
541
542
543
544
545
546
547
548
549
550
551
    return _regnet("regnet_x_800mf", params, pretrained, progress, **kwargs)


def regnet_x_1_6gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_1.6GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
552
    params = BlockParams.from_init_params(depth=18, w_0=80, w_a=34.01, w_m=2.25, group_width=24, **kwargs)
553
554
555
556
557
558
559
560
561
562
563
564
    return _regnet("regnet_x_1_6gf", params, pretrained, progress, **kwargs)


def regnet_x_3_2gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_3.2GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
565
    params = BlockParams.from_init_params(depth=25, w_0=88, w_a=26.31, w_m=2.25, group_width=48, **kwargs)
566
567
568
569
570
571
572
573
574
575
576
577
    return _regnet("regnet_x_3_2gf", params, pretrained, progress, **kwargs)


def regnet_x_8gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_8GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
578
    params = BlockParams.from_init_params(depth=23, w_0=80, w_a=49.56, w_m=2.88, group_width=120, **kwargs)
579
580
581
582
583
584
585
586
587
588
589
590
    return _regnet("regnet_x_8gf", params, pretrained, progress, **kwargs)


def regnet_x_16gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_16GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
591
    params = BlockParams.from_init_params(depth=22, w_0=216, w_a=55.59, w_m=2.1, group_width=128, **kwargs)
592
593
594
595
596
597
598
599
600
601
602
603
    return _regnet("regnet_x_16gf", params, pretrained, progress, **kwargs)


def regnet_x_32gf(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> RegNet:
    """
    Constructs a RegNetX_32GF architecture from
    `"Designing Network Design Spaces" <https://arxiv.org/abs/2003.13678>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
604
    params = BlockParams.from_init_params(depth=23, w_0=320, w_a=69.86, w_m=2.0, group_width=168, **kwargs)
605
606
    return _regnet("regnet_x_32gf", params, pretrained, progress, **kwargs)

607

608
# TODO(kazhang): Add RegNetZ_500MF and RegNetZ_4GF