common_utils.py 26.4 KB
Newer Older
1
import collections.abc
2
import contextlib
3
4
import dataclasses
import enum
5
import functools
6
import itertools
7
import os
8
import pathlib
9
import random
10
11
import shutil
import tempfile
12
13
from collections import defaultdict
from typing import Callable, Sequence, Tuple, Union
14
15

import numpy as np
16
17
18

import PIL.Image
import pytest
eellison's avatar
eellison committed
19
import torch
20
import torch.testing
21
from PIL import Image
22

23
24
25
26
from torch.testing._comparison import BooleanPair, NonePair, not_close_error_metas, NumberPair, TensorLikePair
from torchvision import datapoints, io
from torchvision.transforms._functional_tensor import _max_value as get_max_value
from torchvision.transforms.v2.functional import convert_dtype_image_tensor, to_image_tensor
27

28

29
IN_OSS_CI = any(os.getenv(var) == "true" for var in ["CIRCLECI", "GITHUB_ACTIONS"])
Philip Meier's avatar
Philip Meier committed
30
31
IN_RE_WORKER = os.environ.get("INSIDE_RE_WORKER") is not None
IN_FBCODE = os.environ.get("IN_FBCODE_TORCHVISION") == "1"
32
CUDA_NOT_AVAILABLE_MSG = "CUDA device not available"
33
OSS_CI_GPU_NO_CUDA_MSG = "We're in an OSS GPU machine, and this test doesn't need cuda."
34

35
36
37
38
39
40
41
42
43
44
45

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
46
47


48
49
50
51
52
def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)


53
class MapNestedTensorObjectImpl:
eellison's avatar
eellison committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)
99
100


101
def cycle_over(objs):
102
    for idx, obj1 in enumerate(objs):
103
        for obj2 in objs[:idx] + objs[idx + 1 :]:
104
            yield obj1, obj2
105
106
107


def int_dtypes():
108
    return (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
109
110
111


def float_dtypes():
112
    return (torch.float32, torch.float64)
113
114
115
116
117
118
119
120


@contextlib.contextmanager
def disable_console_output():
    with contextlib.ExitStack() as stack, open(os.devnull, "w") as devnull:
        stack.enter_context(contextlib.redirect_stdout(devnull))
        stack.enter_context(contextlib.redirect_stderr(devnull))
        yield
121
122


123
124
def cpu_and_gpu():
    import pytest  # noqa
125
126

    return ("cpu", pytest.param("cuda", marks=pytest.mark.needs_cuda))
127
128
129
130


def needs_cuda(test_func):
    import pytest  # noqa
131

132
    return pytest.mark.needs_cuda(test_func)
Nicolas Hug's avatar
Nicolas Hug committed
133
134
135
136
137


def _create_data(height=3, width=3, channels=3, device="cpu"):
    # TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
    tensor = torch.randint(0, 256, (channels, height, width), dtype=torch.uint8, device=device)
138
139
140
141
142
143
    data = tensor.permute(1, 2, 0).contiguous().cpu().numpy()
    mode = "RGB"
    if channels == 1:
        mode = "L"
        data = data[..., 0]
    pil_img = Image.fromarray(data, mode=mode)
Nicolas Hug's avatar
Nicolas Hug committed
144
145
146
147
148
    return tensor, pil_img


def _create_data_batch(height=3, width=3, channels=3, num_samples=4, device="cpu"):
    # TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
149
    batch_tensor = torch.randint(0, 256, (num_samples, channels, height, width), dtype=torch.uint8, device=device)
Nicolas Hug's avatar
Nicolas Hug committed
150
151
152
    return batch_tensor


153
154
155
156
157
158
159
160
161
162
163
164
def get_list_of_videos(tmpdir, num_videos=5, sizes=None, fps=None):
    names = []
    for i in range(num_videos):
        if sizes is None:
            size = 5 * (i + 1)
        else:
            size = sizes[i]
        if fps is None:
            f = 5
        else:
            f = fps[i]
        data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8)
165
        name = os.path.join(tmpdir, f"{i}.mp4")
166
167
168
169
170
171
        names.append(name)
        io.write_video(name, data, fps=f)

    return names


Nicolas Hug's avatar
Nicolas Hug committed
172
def _assert_equal_tensor_to_pil(tensor, pil_image, msg=None):
173
    # FIXME: this is handled automatically by `assert_equal` below. Let's remove this in favor of it
Nicolas Hug's avatar
Nicolas Hug committed
174
175
176
177
178
    np_pil_image = np.array(pil_image)
    if np_pil_image.ndim == 2:
        np_pil_image = np_pil_image[:, :, None]
    pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
    if msg is None:
179
        msg = f"tensor:\n{tensor} \ndid not equal PIL tensor:\n{pil_tensor}"
180
    assert_equal(tensor.cpu(), pil_tensor, msg=msg)
Nicolas Hug's avatar
Nicolas Hug committed
181
182


183
184
185
def _assert_approx_equal_tensor_to_pil(
    tensor, pil_image, tol=1e-5, msg=None, agg_method="mean", allowed_percentage_diff=None
):
186
    # FIXME: this is handled automatically by `assert_close` below. Let's remove this in favor of it
Nicolas Hug's avatar
Nicolas Hug committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    # TODO: we could just merge this into _assert_equal_tensor_to_pil
    np_pil_image = np.array(pil_image)
    if np_pil_image.ndim == 2:
        np_pil_image = np_pil_image[:, :, None]
    pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)

    if allowed_percentage_diff is not None:
        # Assert that less than a given %age of pixels are different
        assert (tensor != pil_tensor).to(torch.float).mean() <= allowed_percentage_diff

    # error value can be mean absolute error, max abs error
    # Convert to float to avoid underflow when computing absolute difference
    tensor = tensor.to(torch.float)
    pil_tensor = pil_tensor.to(torch.float)
    err = getattr(torch, agg_method)(torch.abs(tensor - pil_tensor)).item()
202
    assert err < tol, f"{err} vs {tol}"
Nicolas Hug's avatar
Nicolas Hug committed
203
204
205
206
207
208
209


def _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=1e-8, **fn_kwargs):
    transformed_batch = fn(batch_tensors, **fn_kwargs)
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        transformed_img = fn(img_tensor, **fn_kwargs)
210
        torch.testing.assert_close(transformed_img, transformed_batch[i, ...], rtol=0, atol=1e-6)
Nicolas Hug's avatar
Nicolas Hug committed
211
212
213
214
215
216

    if scripted_fn_atol >= 0:
        scripted_fn = torch.jit.script(fn)
        # scriptable function test
        s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
        torch.testing.assert_close(transformed_batch, s_transformed_batch, rtol=1e-5, atol=scripted_fn_atol)
217
218
219


def cache(fn):
220
221
    """Similar to :func:`functools.cache` (Python >= 3.8) or :func:`functools.lru_cache` with infinite cache size,
    but this also caches exceptions.
222
223
224
    """
    sentinel = object()
    out_cache = {}
225
    exc_tb_cache = {}
226
227
228
229
230
231
232
233
234

    @functools.wraps(fn)
    def wrapper(*args, **kwargs):
        key = args + tuple(kwargs.values())

        out = out_cache.get(key, sentinel)
        if out is not sentinel:
            return out

235
236
237
        exc_tb = exc_tb_cache.get(key, sentinel)
        if exc_tb is not sentinel:
            raise exc_tb[0].with_traceback(exc_tb[1])
238
239
240
241

        try:
            out = fn(*args, **kwargs)
        except Exception as exc:
242
243
244
245
            # We need to cache the traceback here as well. Otherwise, each re-raise will add the internal pytest
            # traceback frames anew, but they will only be removed once. Thus, the traceback will be ginormous hiding
            # the actual information in the noise. See https://github.com/pytest-dev/pytest/issues/10363 for details.
            exc_tb_cache[key] = exc, exc.__traceback__
246
247
248
249
250
251
            raise exc

        out_cache[key] = out
        return out

    return wrapper
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840


def combinations_grid(**kwargs):
    """Creates a grid of input combinations.

    Each element in the returned sequence is a dictionary containing one possible combination as values.

    Example:
        >>> combinations_grid(foo=("bar", "baz"), spam=("eggs", "ham"))
        [
            {'foo': 'bar', 'spam': 'eggs'},
            {'foo': 'bar', 'spam': 'ham'},
            {'foo': 'baz', 'spam': 'eggs'},
            {'foo': 'baz', 'spam': 'ham'}
        ]
    """
    return [dict(zip(kwargs.keys(), values)) for values in itertools.product(*kwargs.values())]


class ImagePair(TensorLikePair):
    def __init__(
        self,
        actual,
        expected,
        *,
        mae=False,
        **other_parameters,
    ):
        if all(isinstance(input, PIL.Image.Image) for input in [actual, expected]):
            actual, expected = [to_image_tensor(input) for input in [actual, expected]]

        super().__init__(actual, expected, **other_parameters)
        self.mae = mae

    def compare(self) -> None:
        actual, expected = self.actual, self.expected

        self._compare_attributes(actual, expected)
        actual, expected = self._equalize_attributes(actual, expected)

        if self.mae:
            actual, expected = self._promote_for_comparison(actual, expected)
            mae = float(torch.abs(actual - expected).float().mean())
            if mae > self.atol:
                self._fail(
                    AssertionError,
                    f"The MAE of the images is {mae}, but only {self.atol} is allowed.",
                )
        else:
            super()._compare_values(actual, expected)


def assert_close(
    actual,
    expected,
    *,
    allow_subclasses=True,
    rtol=None,
    atol=None,
    equal_nan=False,
    check_device=True,
    check_dtype=True,
    check_layout=True,
    check_stride=False,
    msg=None,
    **kwargs,
):
    """Superset of :func:`torch.testing.assert_close` with support for PIL vs. tensor image comparison"""
    __tracebackhide__ = True

    error_metas = not_close_error_metas(
        actual,
        expected,
        pair_types=(
            NonePair,
            BooleanPair,
            NumberPair,
            ImagePair,
            TensorLikePair,
        ),
        allow_subclasses=allow_subclasses,
        rtol=rtol,
        atol=atol,
        equal_nan=equal_nan,
        check_device=check_device,
        check_dtype=check_dtype,
        check_layout=check_layout,
        check_stride=check_stride,
        **kwargs,
    )

    if error_metas:
        raise error_metas[0].to_error(msg)


assert_equal = functools.partial(assert_close, rtol=0, atol=0)


def parametrized_error_message(*args, **kwargs):
    def to_str(obj):
        if isinstance(obj, torch.Tensor) and obj.numel() > 10:
            return f"tensor(shape={list(obj.shape)}, dtype={obj.dtype}, device={obj.device})"
        elif isinstance(obj, enum.Enum):
            return f"{type(obj).__name__}.{obj.name}"
        else:
            return repr(obj)

    if args or kwargs:
        postfix = "\n".join(
            [
                "",
                "Failure happened for the following parameters:",
                "",
                *[to_str(arg) for arg in args],
                *[f"{name}={to_str(kwarg)}" for name, kwarg in kwargs.items()],
            ]
        )
    else:
        postfix = ""

    def wrapper(msg):
        return msg + postfix

    return wrapper


class ArgsKwargs:
    def __init__(self, *args, **kwargs):
        self.args = args
        self.kwargs = kwargs

    def __iter__(self):
        yield self.args
        yield self.kwargs

    def load(self, device="cpu"):
        return ArgsKwargs(
            *(arg.load(device) if isinstance(arg, TensorLoader) else arg for arg in self.args),
            **{
                keyword: arg.load(device) if isinstance(arg, TensorLoader) else arg
                for keyword, arg in self.kwargs.items()
            },
        )


DEFAULT_SQUARE_SPATIAL_SIZE = 15
DEFAULT_LANDSCAPE_SPATIAL_SIZE = (7, 33)
DEFAULT_PORTRAIT_SPATIAL_SIZE = (31, 9)
DEFAULT_SPATIAL_SIZES = (
    DEFAULT_LANDSCAPE_SPATIAL_SIZE,
    DEFAULT_PORTRAIT_SPATIAL_SIZE,
    DEFAULT_SQUARE_SPATIAL_SIZE,
    "random",
)


def _parse_spatial_size(size, *, name="size"):
    if size == "random":
        return tuple(torch.randint(15, 33, (2,)).tolist())
    elif isinstance(size, int) and size > 0:
        return (size, size)
    elif (
        isinstance(size, collections.abc.Sequence)
        and len(size) == 2
        and all(isinstance(length, int) and length > 0 for length in size)
    ):
        return tuple(size)
    else:
        raise pytest.UsageError(
            f"'{name}' can either be `'random'`, a positive integer, or a sequence of two positive integers,"
            f"but got {size} instead."
        )


VALID_EXTRA_DIMS = ((), (4,), (2, 3))
DEGENERATE_BATCH_DIMS = ((0,), (5, 0), (0, 5))

DEFAULT_EXTRA_DIMS = (*VALID_EXTRA_DIMS, *DEGENERATE_BATCH_DIMS)


def from_loader(loader_fn):
    def wrapper(*args, **kwargs):
        device = kwargs.pop("device", "cpu")
        loader = loader_fn(*args, **kwargs)
        return loader.load(device)

    return wrapper


def from_loaders(loaders_fn):
    def wrapper(*args, **kwargs):
        device = kwargs.pop("device", "cpu")
        loaders = loaders_fn(*args, **kwargs)
        for loader in loaders:
            yield loader.load(device)

    return wrapper


@dataclasses.dataclass
class TensorLoader:
    fn: Callable[[Sequence[int], torch.dtype, Union[str, torch.device]], torch.Tensor]
    shape: Sequence[int]
    dtype: torch.dtype

    def load(self, device):
        return self.fn(self.shape, self.dtype, device)


@dataclasses.dataclass
class ImageLoader(TensorLoader):
    spatial_size: Tuple[int, int] = dataclasses.field(init=False)
    num_channels: int = dataclasses.field(init=False)

    def __post_init__(self):
        self.spatial_size = self.shape[-2:]
        self.num_channels = self.shape[-3]


NUM_CHANNELS_MAP = {
    "GRAY": 1,
    "GRAY_ALPHA": 2,
    "RGB": 3,
    "RGBA": 4,
}


def get_num_channels(color_space):
    num_channels = NUM_CHANNELS_MAP.get(color_space)
    if not num_channels:
        raise pytest.UsageError(f"Can't determine the number of channels for color space {color_space}")
    return num_channels


def make_image_loader(
    size="random",
    *,
    color_space="RGB",
    extra_dims=(),
    dtype=torch.float32,
    constant_alpha=True,
):
    size = _parse_spatial_size(size)
    num_channels = get_num_channels(color_space)

    def fn(shape, dtype, device):
        max_value = get_max_value(dtype)
        data = torch.testing.make_tensor(shape, low=0, high=max_value, dtype=dtype, device=device)
        if color_space in {"GRAY_ALPHA", "RGBA"} and constant_alpha:
            data[..., -1, :, :] = max_value
        return datapoints.Image(data)

    return ImageLoader(fn, shape=(*extra_dims, num_channels, *size), dtype=dtype)


make_image = from_loader(make_image_loader)


def make_image_loaders(
    *,
    sizes=DEFAULT_SPATIAL_SIZES,
    color_spaces=(
        "GRAY",
        "GRAY_ALPHA",
        "RGB",
        "RGBA",
    ),
    extra_dims=DEFAULT_EXTRA_DIMS,
    dtypes=(torch.float32, torch.float64, torch.uint8),
    constant_alpha=True,
):
    for params in combinations_grid(size=sizes, color_space=color_spaces, extra_dims=extra_dims, dtype=dtypes):
        yield make_image_loader(**params, constant_alpha=constant_alpha)


make_images = from_loaders(make_image_loaders)


def make_image_loader_for_interpolation(size="random", *, color_space="RGB", dtype=torch.uint8):
    size = _parse_spatial_size(size)
    num_channels = get_num_channels(color_space)

    def fn(shape, dtype, device):
        height, width = shape[-2:]

        image_pil = (
            PIL.Image.open(pathlib.Path(__file__).parent / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")
            .resize((width, height))
            .convert(
                {
                    "GRAY": "L",
                    "GRAY_ALPHA": "LA",
                    "RGB": "RGB",
                    "RGBA": "RGBA",
                }[color_space]
            )
        )

        image_tensor = convert_dtype_image_tensor(to_image_tensor(image_pil).to(device=device), dtype=dtype)

        return datapoints.Image(image_tensor)

    return ImageLoader(fn, shape=(num_channels, *size), dtype=dtype)


def make_image_loaders_for_interpolation(
    sizes=((233, 147),),
    color_spaces=("RGB",),
    dtypes=(torch.uint8,),
):
    for params in combinations_grid(size=sizes, color_space=color_spaces, dtype=dtypes):
        yield make_image_loader_for_interpolation(**params)


@dataclasses.dataclass
class BoundingBoxLoader(TensorLoader):
    format: datapoints.BoundingBoxFormat
    spatial_size: Tuple[int, int]


def randint_with_tensor_bounds(arg1, arg2=None, **kwargs):
    low, high = torch.broadcast_tensors(
        *[torch.as_tensor(arg) for arg in ((0, arg1) if arg2 is None else (arg1, arg2))]
    )
    return torch.stack(
        [
            torch.randint(low_scalar, high_scalar, (), **kwargs)
            for low_scalar, high_scalar in zip(low.flatten().tolist(), high.flatten().tolist())
        ]
    ).reshape(low.shape)


def make_bounding_box_loader(*, extra_dims=(), format, spatial_size="random", dtype=torch.float32):
    if isinstance(format, str):
        format = datapoints.BoundingBoxFormat[format]
    if format not in {
        datapoints.BoundingBoxFormat.XYXY,
        datapoints.BoundingBoxFormat.XYWH,
        datapoints.BoundingBoxFormat.CXCYWH,
    }:
        raise pytest.UsageError(f"Can't make bounding box in format {format}")

    spatial_size = _parse_spatial_size(spatial_size, name="spatial_size")

    def fn(shape, dtype, device):
        *extra_dims, num_coordinates = shape
        if num_coordinates != 4:
            raise pytest.UsageError()

        if any(dim == 0 for dim in extra_dims):
            return datapoints.BoundingBox(
                torch.empty(*extra_dims, 4, dtype=dtype, device=device), format=format, spatial_size=spatial_size
            )

        height, width = spatial_size

        if format == datapoints.BoundingBoxFormat.XYXY:
            x1 = torch.randint(0, width // 2, extra_dims)
            y1 = torch.randint(0, height // 2, extra_dims)
            x2 = randint_with_tensor_bounds(x1 + 1, width - x1) + x1
            y2 = randint_with_tensor_bounds(y1 + 1, height - y1) + y1
            parts = (x1, y1, x2, y2)
        elif format == datapoints.BoundingBoxFormat.XYWH:
            x = torch.randint(0, width // 2, extra_dims)
            y = torch.randint(0, height // 2, extra_dims)
            w = randint_with_tensor_bounds(1, width - x)
            h = randint_with_tensor_bounds(1, height - y)
            parts = (x, y, w, h)
        else:  # format == features.BoundingBoxFormat.CXCYWH:
            cx = torch.randint(1, width - 1, extra_dims)
            cy = torch.randint(1, height - 1, extra_dims)
            w = randint_with_tensor_bounds(1, torch.minimum(cx, width - cx) + 1)
            h = randint_with_tensor_bounds(1, torch.minimum(cy, height - cy) + 1)
            parts = (cx, cy, w, h)

        return datapoints.BoundingBox(
            torch.stack(parts, dim=-1).to(dtype=dtype, device=device), format=format, spatial_size=spatial_size
        )

    return BoundingBoxLoader(fn, shape=(*extra_dims, 4), dtype=dtype, format=format, spatial_size=spatial_size)


make_bounding_box = from_loader(make_bounding_box_loader)


def make_bounding_box_loaders(
    *,
    extra_dims=DEFAULT_EXTRA_DIMS,
    formats=tuple(datapoints.BoundingBoxFormat),
    spatial_size="random",
    dtypes=(torch.float32, torch.float64, torch.int64),
):
    for params in combinations_grid(extra_dims=extra_dims, format=formats, dtype=dtypes):
        yield make_bounding_box_loader(**params, spatial_size=spatial_size)


make_bounding_boxes = from_loaders(make_bounding_box_loaders)


class MaskLoader(TensorLoader):
    pass


def make_detection_mask_loader(size="random", *, num_objects="random", extra_dims=(), dtype=torch.uint8):
    # This produces "detection" masks, i.e. `(*, N, H, W)`, where `N` denotes the number of objects
    size = _parse_spatial_size(size)
    num_objects = int(torch.randint(1, 11, ())) if num_objects == "random" else num_objects

    def fn(shape, dtype, device):
        data = torch.testing.make_tensor(shape, low=0, high=2, dtype=dtype, device=device)
        return datapoints.Mask(data)

    return MaskLoader(fn, shape=(*extra_dims, num_objects, *size), dtype=dtype)


make_detection_mask = from_loader(make_detection_mask_loader)


def make_detection_mask_loaders(
    sizes=DEFAULT_SPATIAL_SIZES,
    num_objects=(1, 0, "random"),
    extra_dims=DEFAULT_EXTRA_DIMS,
    dtypes=(torch.uint8,),
):
    for params in combinations_grid(size=sizes, num_objects=num_objects, extra_dims=extra_dims, dtype=dtypes):
        yield make_detection_mask_loader(**params)


make_detection_masks = from_loaders(make_detection_mask_loaders)


def make_segmentation_mask_loader(size="random", *, num_categories="random", extra_dims=(), dtype=torch.uint8):
    # This produces "segmentation" masks, i.e. `(*, H, W)`, where the category is encoded in the values
    size = _parse_spatial_size(size)
    num_categories = int(torch.randint(1, 11, ())) if num_categories == "random" else num_categories

    def fn(shape, dtype, device):
        data = torch.testing.make_tensor(shape, low=0, high=num_categories, dtype=dtype, device=device)
        return datapoints.Mask(data)

    return MaskLoader(fn, shape=(*extra_dims, *size), dtype=dtype)


make_segmentation_mask = from_loader(make_segmentation_mask_loader)


def make_segmentation_mask_loaders(
    *,
    sizes=DEFAULT_SPATIAL_SIZES,
    num_categories=(1, 2, "random"),
    extra_dims=DEFAULT_EXTRA_DIMS,
    dtypes=(torch.uint8,),
):
    for params in combinations_grid(size=sizes, num_categories=num_categories, extra_dims=extra_dims, dtype=dtypes):
        yield make_segmentation_mask_loader(**params)


make_segmentation_masks = from_loaders(make_segmentation_mask_loaders)


def make_mask_loaders(
    *,
    sizes=DEFAULT_SPATIAL_SIZES,
    num_objects=(1, 0, "random"),
    num_categories=(1, 2, "random"),
    extra_dims=DEFAULT_EXTRA_DIMS,
    dtypes=(torch.uint8,),
):
    yield from make_detection_mask_loaders(sizes=sizes, num_objects=num_objects, extra_dims=extra_dims, dtypes=dtypes)
    yield from make_segmentation_mask_loaders(
        sizes=sizes, num_categories=num_categories, extra_dims=extra_dims, dtypes=dtypes
    )


make_masks = from_loaders(make_mask_loaders)


class VideoLoader(ImageLoader):
    pass


def make_video_loader(
    size="random",
    *,
    color_space="RGB",
    num_frames="random",
    extra_dims=(),
    dtype=torch.uint8,
):
    size = _parse_spatial_size(size)
    num_frames = int(torch.randint(1, 5, ())) if num_frames == "random" else num_frames

    def fn(shape, dtype, device):
        video = make_image(size=shape[-2:], extra_dims=shape[:-3], dtype=dtype, device=device)
        return datapoints.Video(video)

    return VideoLoader(fn, shape=(*extra_dims, num_frames, get_num_channels(color_space), *size), dtype=dtype)


make_video = from_loader(make_video_loader)


def make_video_loaders(
    *,
    sizes=DEFAULT_SPATIAL_SIZES,
    color_spaces=(
        "GRAY",
        "RGB",
    ),
    num_frames=(1, 0, "random"),
    extra_dims=DEFAULT_EXTRA_DIMS,
    dtypes=(torch.uint8, torch.float32, torch.float64),
):
    for params in combinations_grid(
        size=sizes, color_space=color_spaces, num_frames=num_frames, extra_dims=extra_dims, dtype=dtypes
    ):
        yield make_video_loader(**params)


make_videos = from_loaders(make_video_loaders)


class TestMark:
    def __init__(
        self,
        # Tuple of test class name and test function name that identifies the test the mark is applied to. If there is
        # no test class, i.e. a standalone test function, use `None`.
        test_id,
        # `pytest.mark.*` to apply, e.g. `pytest.mark.skip` or `pytest.mark.xfail`
        mark,
        *,
        # Callable, that will be passed an `ArgsKwargs` and should return a boolean to indicate if the mark will be
        # applied. If omitted, defaults to always apply.
        condition=None,
    ):
        self.test_id = test_id
        self.mark = mark
        self.condition = condition or (lambda args_kwargs: True)


def mark_framework_limitation(test_id, reason, condition=None):
    # The purpose of this function is to have a single entry point for skip marks that are only there, because the test
    # framework cannot handle the kernel in general or a specific parameter combination.
    # As development progresses, we can change the `mark.skip` to `mark.xfail` from time to time to see if the skip is
    # still justified.
    # We don't want to use `mark.xfail` all the time, because that actually runs the test until an error happens. Thus,
    # we are wasting CI resources for no reason for most of the time
    return TestMark(test_id, pytest.mark.skip(reason=reason), condition=condition)


class InfoBase:
    def __init__(
        self,
        *,
        # Identifier if the info that shows up the parametrization.
        id,
        # Test markers that will be (conditionally) applied to an `ArgsKwargs` parametrization.
        # See the `TestMark` class for details
        test_marks=None,
        # Additional parameters, e.g. `rtol=1e-3`, passed to `assert_close`. Keys are a 3-tuple of `test_id` (see
        # `TestMark`), the dtype, and the device.
        closeness_kwargs=None,
    ):
        self.id = id

        self.test_marks = test_marks or []
        test_marks_map = defaultdict(list)
        for test_mark in self.test_marks:
            test_marks_map[test_mark.test_id].append(test_mark)
        self._test_marks_map = dict(test_marks_map)

        self.closeness_kwargs = closeness_kwargs or dict()

    def get_marks(self, test_id, args_kwargs):
        return [
            test_mark.mark for test_mark in self._test_marks_map.get(test_id, []) if test_mark.condition(args_kwargs)
        ]

    def get_closeness_kwargs(self, test_id, *, dtype, device):
        if not (isinstance(test_id, tuple) and len(test_id) == 2):
            msg = "`test_id` should be a `Tuple[Optional[str], str]` denoting the test class and function name"
            if callable(test_id):
                msg += ". Did you forget to add the `test_id` fixture to parameters of the test?"
            else:
                msg += f", but got {test_id} instead."
            raise pytest.UsageError(msg)
        if isinstance(device, torch.device):
            device = device.type
        return self.closeness_kwargs.get((test_id, dtype, device), dict())