common_utils.py 6.38 KB
Newer Older
1
2
3
4
import os
import shutil
import tempfile
import contextlib
eellison's avatar
eellison committed
5
import unittest
6
import pytest
eellison's avatar
eellison committed
7
8
9
10
import argparse
import sys
import torch
import __main__
11
import random
12
import inspect
13
import functools
14

15
from numbers import Number
Philip Meier's avatar
Philip Meier committed
16
from torch._six import string_classes
17
from collections import OrderedDict
18
from torchvision import io
19

20
21
22
import numpy as np
from PIL import Image

23

24
IN_CIRCLE_CI = os.getenv("CIRCLECI", False) == 'true'
25
26
27
IN_RE_WORKER = os.environ.get("INSIDE_RE_WORKER") is not None
IN_FBCODE = os.environ.get("IN_FBCODE_TORCHVISION") == "1"
CUDA_NOT_AVAILABLE_MSG = 'CUDA device not available'
28
CIRCLECI_GPU_NO_CUDA_MSG = "We're in a CircleCI GPU machine, and this test doesn't need cuda."
29

30
31
32
33
34
35
36
37
38
39
40

@contextlib.contextmanager
def get_tmp_dir(src=None, **kwargs):
    tmp_dir = tempfile.mkdtemp(**kwargs)
    if src is not None:
        os.rmdir(tmp_dir)
        shutil.copytree(src, tmp_dir)
    try:
        yield tmp_dir
    finally:
        shutil.rmtree(tmp_dir)
eellison's avatar
eellison committed
41
42


43
44
45
46
47
def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)


eellison's avatar
eellison committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class MapNestedTensorObjectImpl(object):
    def __init__(self, tensor_map_fn):
        self.tensor_map_fn = tensor_map_fn

    def __call__(self, object):
        if isinstance(object, torch.Tensor):
            return self.tensor_map_fn(object)

        elif isinstance(object, dict):
            mapped_dict = {}
            for key, value in object.items():
                mapped_dict[self(key)] = self(value)
            return mapped_dict

        elif isinstance(object, (list, tuple)):
            mapped_iter = []
            for iter in object:
                mapped_iter.append(self(iter))
            return mapped_iter if not isinstance(object, tuple) else tuple(mapped_iter)

        else:
            return object


def map_nested_tensor_object(object, tensor_map_fn):
    impl = MapNestedTensorObjectImpl(tensor_map_fn)
    return impl(object)


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


@contextlib.contextmanager
def freeze_rng_state():
    rng_state = torch.get_rng_state()
    if torch.cuda.is_available():
        cuda_rng_state = torch.cuda.get_rng_state()
    yield
    if torch.cuda.is_available():
        torch.cuda.set_rng_state(cuda_rng_state)
    torch.set_rng_state(rng_state)
94
95


96
def cycle_over(objs):
97
98
99
    for idx, obj1 in enumerate(objs):
        for obj2 in objs[:idx] + objs[idx + 1:]:
            yield obj1, obj2
100
101
102


def int_dtypes():
103
    return (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
104
105
106


def float_dtypes():
107
    return (torch.float32, torch.float64)
108
109
110
111
112
113
114
115


@contextlib.contextmanager
def disable_console_output():
    with contextlib.ExitStack() as stack, open(os.devnull, "w") as devnull:
        stack.enter_context(contextlib.redirect_stdout(devnull))
        stack.enter_context(contextlib.redirect_stderr(devnull))
        yield
116
117


118
119
def cpu_and_gpu():
    import pytest  # noqa
120
    return ('cpu', pytest.param('cuda', marks=pytest.mark.needs_cuda))
121
122
123
124


def needs_cuda(test_func):
    import pytest  # noqa
125
    return pytest.mark.needs_cuda(test_func)
Nicolas Hug's avatar
Nicolas Hug committed
126
127
128
129
130


def _create_data(height=3, width=3, channels=3, device="cpu"):
    # TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
    tensor = torch.randint(0, 256, (channels, height, width), dtype=torch.uint8, device=device)
131
132
133
134
135
136
    data = tensor.permute(1, 2, 0).contiguous().cpu().numpy()
    mode = "RGB"
    if channels == 1:
        mode = "L"
        data = data[..., 0]
    pil_img = Image.fromarray(data, mode=mode)
Nicolas Hug's avatar
Nicolas Hug committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    return tensor, pil_img


def _create_data_batch(height=3, width=3, channels=3, num_samples=4, device="cpu"):
    # TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
    batch_tensor = torch.randint(
        0, 256,
        (num_samples, channels, height, width),
        dtype=torch.uint8,
        device=device
    )
    return batch_tensor


151
assert_equal = functools.partial(torch.testing.assert_close, rtol=0, atol=1e-6)
152
153


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def get_list_of_videos(tmpdir, num_videos=5, sizes=None, fps=None):
    names = []
    for i in range(num_videos):
        if sizes is None:
            size = 5 * (i + 1)
        else:
            size = sizes[i]
        if fps is None:
            f = 5
        else:
            f = fps[i]
        data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8)
        name = os.path.join(tmpdir, "{}.mp4".format(i))
        names.append(name)
        io.write_video(name, data, fps=f)

    return names


Nicolas Hug's avatar
Nicolas Hug committed
173
174
175
176
177
178
179
def _assert_equal_tensor_to_pil(tensor, pil_image, msg=None):
    np_pil_image = np.array(pil_image)
    if np_pil_image.ndim == 2:
        np_pil_image = np_pil_image[:, :, None]
    pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1)))
    if msg is None:
        msg = "tensor:\n{} \ndid not equal PIL tensor:\n{}".format(tensor, pil_tensor)
180
    assert_equal(tensor.cpu(), pil_tensor, msg=msg)
Nicolas Hug's avatar
Nicolas Hug committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214


def _assert_approx_equal_tensor_to_pil(tensor, pil_image, tol=1e-5, msg=None, agg_method="mean",
                                       allowed_percentage_diff=None):
    # TODO: we could just merge this into _assert_equal_tensor_to_pil
    np_pil_image = np.array(pil_image)
    if np_pil_image.ndim == 2:
        np_pil_image = np_pil_image[:, :, None]
    pil_tensor = torch.as_tensor(np_pil_image.transpose((2, 0, 1))).to(tensor)

    if allowed_percentage_diff is not None:
        # Assert that less than a given %age of pixels are different
        assert (tensor != pil_tensor).to(torch.float).mean() <= allowed_percentage_diff

    # error value can be mean absolute error, max abs error
    # Convert to float to avoid underflow when computing absolute difference
    tensor = tensor.to(torch.float)
    pil_tensor = pil_tensor.to(torch.float)
    err = getattr(torch, agg_method)(torch.abs(tensor - pil_tensor)).item()
    assert err < tol


def _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=1e-8, **fn_kwargs):
    transformed_batch = fn(batch_tensors, **fn_kwargs)
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        transformed_img = fn(img_tensor, **fn_kwargs)
        assert_equal(transformed_img, transformed_batch[i, ...])

    if scripted_fn_atol >= 0:
        scripted_fn = torch.jit.script(fn)
        # scriptable function test
        s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
        torch.testing.assert_close(transformed_batch, s_transformed_batch, rtol=1e-5, atol=scripted_fn_atol)