functional_tensor.py 20.4 KB
Newer Older
1
import torch
2
from torch import Tensor
3
from torch.jit.annotations import List, BroadcastingList2
4
5


vfdev's avatar
vfdev committed
6
7
def _is_tensor_a_torch_image(x: Tensor) -> bool:
    return x.ndim >= 2
8
9


vfdev's avatar
vfdev committed
10
def _get_image_size(img: Tensor) -> List[int]:
vfdev's avatar
vfdev committed
11
    """Returns (w, h) of tensor image"""
vfdev's avatar
vfdev committed
12
13
14
15
16
17
    if _is_tensor_a_torch_image(img):
        return [img.shape[-1], img.shape[-2]]
    raise TypeError("Unexpected type {}".format(type(img)))


def vflip(img: Tensor) -> Tensor:
18
19
20
    """Vertically flip the given the Image Tensor.

    Args:
21
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
22
23
24
25

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
26
    if not _is_tensor_a_torch_image(img):
27
28
        raise TypeError('tensor is not a torch image.')

29
    return img.flip(-2)
30
31


vfdev's avatar
vfdev committed
32
def hflip(img: Tensor) -> Tensor:
33
34
35
    """Horizontally flip the given the Image Tensor.

    Args:
36
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
37
38
39
40

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
41
    if not _is_tensor_a_torch_image(img):
42
43
        raise TypeError('tensor is not a torch image.')

44
    return img.flip(-1)
ekka's avatar
ekka committed
45
46


vfdev's avatar
vfdev committed
47
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
ekka's avatar
ekka committed
48
    """Crop the given Image Tensor.
49

ekka's avatar
ekka committed
50
    Args:
vfdev's avatar
vfdev committed
51
        img (Tensor): Image to be cropped in the form [..., H, W]. (0,0) denotes the top left corner of the image.
ekka's avatar
ekka committed
52
53
54
55
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
56

ekka's avatar
ekka committed
57
58
59
    Returns:
        Tensor: Cropped image.
    """
60
    if not _is_tensor_a_torch_image(img):
vfdev's avatar
vfdev committed
61
        raise TypeError("tensor is not a torch image.")
ekka's avatar
ekka committed
62
63

    return img[..., top:top + height, left:left + width]
64
65


vfdev's avatar
vfdev committed
66
def rgb_to_grayscale(img: Tensor) -> Tensor:
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    """Convert the given RGB Image Tensor to Grayscale.
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].

    Returns:
        Tensor: Grayscale image.

    """
    if img.shape[0] != 3:
        raise TypeError('Input Image does not contain 3 Channels')

    return (0.2989 * img[0] + 0.5870 * img[1] + 0.1140 * img[2]).to(img.dtype)


vfdev's avatar
vfdev committed
84
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
85
86
87
88
89
90
91
92
93
94
95
    """Adjust brightness of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
96
97
98
    if brightness_factor < 0:
        raise ValueError('brightness_factor ({}) is not non-negative.'.format(brightness_factor))

99
    if not _is_tensor_a_torch_image(img):
100
101
        raise TypeError('tensor is not a torch image.')

102
    return _blend(img, torch.zeros_like(img), brightness_factor)
103
104


vfdev's avatar
vfdev committed
105
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
106
107
108
109
110
111
112
113
114
115
116
    """Adjust contrast of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
117
118
119
    if contrast_factor < 0:
        raise ValueError('contrast_factor ({}) is not non-negative.'.format(contrast_factor))

120
    if not _is_tensor_a_torch_image(img):
121
122
        raise TypeError('tensor is not a torch image.')

123
    mean = torch.mean(rgb_to_grayscale(img).to(torch.float))
124
125
126
127

    return _blend(img, mean, contrast_factor)


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def adjust_hue(img, hue_factor):
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (Tensor): Image to be adjusted. Image type is either uint8 or float.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
         Tensor: Hue adjusted image.
    """
153
    if not (-0.5 <= hue_factor <= 0.5):
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_tensor_a_torch_image(img):
        raise TypeError('tensor is not a torch image.')

    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
    h, s, v = img.unbind(0)
    h += hue_factor
    h = h % 1.0
    img = torch.stack((h, s, v))
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


vfdev's avatar
vfdev committed
176
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
177
178
179
180
    """Adjust color saturation of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
181
182
183
        saturation_factor (float):  How much to adjust the saturation. Can be any
            non negative number. 0 gives a black and white image, 1 gives the
            original image while 2 enhances the saturation by a factor of 2.
184
185
186
187

    Returns:
        Tensor: Saturation adjusted image.
    """
188
189
190
    if saturation_factor < 0:
        raise ValueError('saturation_factor ({}) is not non-negative.'.format(saturation_factor))

191
    if not _is_tensor_a_torch_image(img):
192
193
        raise TypeError('tensor is not a torch image.')

194
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
195
196


vfdev's avatar
vfdev committed
197
def center_crop(img: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
198
199
200
    """Crop the Image Tensor and resize it to desired size.

    Args:
vfdev's avatar
vfdev committed
201
        img (Tensor): Image to be cropped.
202
203
204
205
206
207
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
208
    if not _is_tensor_a_torch_image(img):
209
210
211
212
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
213
214
215
216
217
218
219
220
    # crop_top = int(round((image_height - crop_height) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_top = int((image_height - crop_height + 1) * 0.5)
    # crop_left = int(round((image_width - crop_width) / 2.))
    # Result can be different between python func and scripted func
    # Temporary workaround:
    crop_left = int((image_width - crop_width + 1) * 0.5)
221
222
223
224

    return crop(img, crop_top, crop_left, crop_height, crop_width)


vfdev's avatar
vfdev committed
225
def five_crop(img: Tensor, size: BroadcastingList2[int]) -> List[Tensor]:
226
227
    """Crop the given Image Tensor into four corners and the central crop.
    .. Note::
228
        This transform returns a List of Tensors and there may be a
229
230
231
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
232
233
234
235
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
236
237

    Returns:
238
       List: List (tl, tr, bl, br, center)
239
240
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
241
    if not _is_tensor_a_torch_image(img):
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

258
    return [tl, tr, bl, br, center]
259
260


vfdev's avatar
vfdev committed
261
def ten_crop(img: Tensor, size: BroadcastingList2[int], vertical_flip: bool = False) -> List[Tensor]:
262
263
    """Crop the given Image Tensor into four corners and the central crop plus the
        flipped version of these (horizontal flipping is used by default).
vfdev's avatar
vfdev committed
264

265
    .. Note::
266
        This transform returns a List of images and there may be a
267
268
269
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
270
271
        img (Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
272
273
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
vfdev's avatar
vfdev committed
274
        vertical_flip (bool): Use vertical flipping instead of horizontal
275
276

    Returns:
277
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
278
279
280
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
281
    if not _is_tensor_a_torch_image(img):
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


vfdev's avatar
vfdev committed
297
def _blend(img1: Tensor, img2: Tensor, ratio: float) -> Tensor:
298
    bound = 1 if img1.dtype in [torch.half, torch.float32, torch.float64] else 255
299
    return (ratio * img1 + (1 - ratio) * img2).clamp(0, bound).to(img1.dtype)
300
301
302
303
304


def _rgb2hsv(img):
    r, g, b = img.unbind(0)

305
306
307
308
309
310
311
312
313
314
315
316
    maxc = torch.max(img, dim=0).values
    minc = torch.min(img, dim=0).values

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
317
318

    cr = maxc - minc
319
320
321
322
323
324
325
326
327
328
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
    s = cr / torch.where(eqc, maxc.new_ones(()), maxc)
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
    cr_divisor = torch.where(eqc, maxc.new_ones(()), cr)
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
    return torch.stack((h, s, maxc))


def _hsv2rgb(img):
    h, s, v = img.unbind(0)
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

    mask = i == torch.arange(6)[:, None, None]

    a1 = torch.stack((v, q, p, p, t, v))
    a2 = torch.stack((t, v, v, q, p, p))
    a3 = torch.stack((p, p, t, v, v, q))
    a4 = torch.stack((a1, a2, a3))

    return torch.einsum("ijk, xijk -> xjk", mask.to(dtype=img.dtype), a4)
357
358


359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
def _pad_symmetric(img: Tensor, padding: List[int]) -> Tensor:
    # padding is left, right, top, bottom
    in_sizes = img.size()

    x_indices = [i for i in range(in_sizes[-1])]  # [0, 1, 2, 3, ...]
    left_indices = [i for i in range(padding[0] - 1, -1, -1)]  # e.g. [3, 2, 1, 0]
    right_indices = [-(i + 1) for i in range(padding[1])]  # e.g. [-1, -2, -3]
    x_indices = torch.tensor(left_indices + x_indices + right_indices)

    y_indices = [i for i in range(in_sizes[-2])]
    top_indices = [i for i in range(padding[2] - 1, -1, -1)]
    bottom_indices = [-(i + 1) for i in range(padding[3])]
    y_indices = torch.tensor(top_indices + y_indices + bottom_indices)

    ndim = img.ndim
    if ndim == 3:
        return img[:, y_indices[:, None], x_indices[None, :]]
    elif ndim == 4:
        return img[:, :, y_indices[:, None], x_indices[None, :]]
    else:
        raise RuntimeError("Symmetric padding of N-D tensors are not supported yet")


382
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
383
384
385
386
387
388
389
390
391
392
393
394
    r"""Pad the given Tensor Image on all sides with specified padding mode and fill value.

    Args:
        img (Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively. In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int): Pixel fill value for constant fill. Default is 0.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
395
396
        padding_mode (str): Type of padding. Should be: constant, edge or reflect. Default is constant.
            Mode symmetric is not yet supported for Tensor inputs.
397
398
399

            - constant: pads with a constant value, this value is specified with fill

400
401
402
403
404
405
406
            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

407
408
409
410
411
            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    Returns:
        Tensor: Padded image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

432
433
    if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
        raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")
434
435
436

    if isinstance(padding, int):
        if torch.jit.is_scripting():
vfdev's avatar
vfdev committed
437
            # This maybe unreachable
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

453
454
455
    if padding_mode == "edge":
        # remap padding_mode str
        padding_mode = "replicate"
456
457
458
459
460
    elif padding_mode == "symmetric":
        # route to another implementation
        if p[0] < 0 or p[1] < 0 or p[2] < 0 or p[3] < 0:  # no any support for torch script
            raise ValueError("Padding can not be negative for symmetric padding_mode")
        return _pad_symmetric(img, p)
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    out_dtype = img.dtype
    need_cast = False
    if (padding_mode != "constant") and img.dtype not in (torch.float32, torch.float64):
        # Here we temporary cast input tensor to float
        # until pytorch issue is resolved :
        # https://github.com/pytorch/pytorch/issues/40763
        need_cast = True
        img = img.to(torch.float32)

476
    img = torch.nn.functional.pad(img, p, mode=padding_mode, value=float(fill))
477
478
479
480
481
482
483

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        img = img.to(out_dtype)

484
    return img
vfdev's avatar
vfdev committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534


def resize(img: Tensor, size: List[int], interpolation: int = 2) -> Tensor:
    r"""Resize the input Tensor to the given size.

    Args:
        img (Tensor): Image to be resized.
        size (int or tuple or list): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
            the smaller edge of the image will be matched to this number maintaining
            the aspect ratio. i.e, if height > width, then image will be rescaled to
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
            In torchscript mode padding as a single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
        interpolation (int, optional): Desired interpolation. Default is bilinear.

    Returns:
        Tensor: Resized image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(size, (int, tuple, list)):
        raise TypeError("Got inappropriate size arg")
    if not isinstance(interpolation, int):
        raise TypeError("Got inappropriate interpolation arg")

    _interpolation_modes = {
        0: "nearest",
        2: "bilinear",
        3: "bicubic",
    }

    if interpolation not in _interpolation_modes:
        raise ValueError("This interpolation mode is unsupported with Tensor input")

    if isinstance(size, tuple):
        size = list(size)

    if isinstance(size, list) and len(size) not in [1, 2]:
        raise ValueError("Size must be an int or a 1 or 2 element tuple/list, not a "
                         "{} element tuple/list".format(len(size)))

    w, h = _get_image_size(img)

    if isinstance(size, int):
        size_w, size_h = size, size
    elif len(size) < 2:
        size_w, size_h = size[0], size[0]
    else:
535
        size_w, size_h = size[1], size[0]  # Convention (h, w)
vfdev's avatar
vfdev committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

    if isinstance(size, int) or len(size) < 2:
        if w < h:
            size_h = int(size_w * h / w)
        else:
            size_w = int(size_h * w / h)

    if (w <= h and w == size_w) or (h <= w and h == size_h):
        return img

    # make image NCHW
    need_squeeze = False
    if img.ndim < 4:
        img = img.unsqueeze(dim=0)
        need_squeeze = True

    mode = _interpolation_modes[interpolation]

    out_dtype = img.dtype
    need_cast = False
    if img.dtype not in (torch.float32, torch.float64):
        need_cast = True
        img = img.to(torch.float32)

    # Define align_corners to avoid warnings
    align_corners = False if mode in ["bilinear", "bicubic"] else None

    img = torch.nn.functional.interpolate(img, size=(size_h, size_w), mode=mode, align_corners=align_corners)

    if need_squeeze:
        img = img.squeeze(dim=0)

    if need_cast:
        if mode == "bicubic":
            img = img.clamp(min=0, max=255)
        img = img.to(out_dtype)

    return img