alexnet.py 2.14 KB
Newer Older
1
import torch
2
import torch.nn as nn
3
from .utils import load_state_dict_from_url
4
from typing import Any
5
6
7
8
9
10


__all__ = ['AlexNet', 'alexnet']


model_urls = {
11
    'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
12
13
14
}


Soumith Chintala's avatar
Soumith Chintala committed
15
class AlexNet(nn.Module):
16

17
    def __init__(self, num_classes: int = 1000):
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
34
        self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
35
36
37
38
39
40
41
42
43
44
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

45
    def forward(self, x: torch.Tensor) -> torch.Tensor:
46
        x = self.features(x)
47
        x = self.avgpool(x)
48
        x = torch.flatten(x, 1)
49
50
51
52
        x = self.classifier(x)
        return x


53
def alexnet(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> AlexNet:
54
55
56
57
58
    r"""AlexNet model architecture from the
    `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
59
        progress (bool): If True, displays a progress bar of the download to stderr
60
    """
61
    model = AlexNet(**kwargs)
62
    if pretrained:
63
64
65
        state_dict = load_state_dict_from_url(model_urls['alexnet'],
                                              progress=progress)
        model.load_state_dict(state_dict)
66
    return model