video_utils.py 12.2 KB
Newer Older
1
import bisect
2
from fractions import Fraction
3
4
import math
import torch
5
6
7
from torchvision.io import (
    _read_video_timestamps_from_file,
    _read_video_from_file,
8
    _probe_video_from_file
9
)
10
11
from torchvision.io import read_video_timestamps, read_video

12
13
from .utils import tqdm

14

15
16
17
18
19
20
21
22
23
24
25
26
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
68
69
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
70
71
    """
    def __init__(self, video_paths, clip_length_in_frames=16, frames_between_clips=1,
72
73
                 frame_rate=None, _precomputed_metadata=None, num_workers=0,
                 _video_width=0, _video_height=0, _video_min_dimension=0,
74
                 _audio_samples=0, _audio_channels=0):
75

76
        self.video_paths = video_paths
77
        self.num_workers = num_workers
78
79

        # these options are not valid for pyav backend
80
81
82
83
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
        self._audio_samples = _audio_samples
84
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
85

86
87
88
89
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
90
91
92
93
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

    def _compute_frame_pts(self):
        self.video_pts = []
94
        self.video_fps = []
95
96
97
98

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        class DS(object):
99
            def __init__(self, x):
100
101
102
103
104
105
                self.x = x

            def __len__(self):
                return len(self.x)

            def __getitem__(self, idx):
106
                return read_video_timestamps(self.x[idx])
107
108
109

        import torch.utils.data
        dl = torch.utils.data.DataLoader(
110
            DS(self.video_paths),
111
            batch_size=16,
112
            num_workers=self.num_workers,
113
114
115
116
117
            collate_fn=lambda x: x)

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
118
119
120
121
                clips, fps = list(zip(*batch))
                clips = [torch.as_tensor(c) for c in clips]
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
122

123
    def _init_from_metadata(self, metadata):
124
        self.video_paths = metadata["video_paths"]
125
126
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
127
128
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
129
130
131
132
133
134

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
135
            "video_fps": self.video_fps
136
        }
137
        return _metadata
138
139
140
141

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
142
        video_fps = [self.video_fps[i] for i in indices]
143
        metadata = {
144
            "video_paths": video_paths,
145
            "video_pts": video_pts,
146
            "video_fps": video_fps
147
148
        }
        return type(self)(video_paths, self.num_frames, self.step, self.frame_rate,
149
150
151
152
                          _precomputed_metadata=metadata, num_workers=self.num_workers,
                          _video_width=self._video_width,
                          _video_height=self._video_height,
                          _video_min_dimension=self._video_min_dimension,
153
154
                          _audio_samples=self._audio_samples,
                          _audio_channels=self._audio_channels)
155

156
157
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
158
159
160
161
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
        idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate)
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
189
190
191
192
        for video_pts, fps in zip(self.video_pts, self.video_fps):
            clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate)
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
            raise IndexError("Index {} out of range "
                             "({} number of clips)".format(idx, self.num_clips()))
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        from torchvision import get_video_backend
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
                raise ValueError("pyav backend doesn't support _video_min_dimension != 0")
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
267
268
269
270
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
271
272
273
            info = _probe_video_from_file(video_path)
            video_fps = info["video_fps"]
            audio_fps = None
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
            if "audio_timebase" in info:
                audio_timebase = info["audio_timebase"]
                audio_start_pts = pts_convert(
                    video_start_pts,
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.floor,
                )
                audio_end_pts = pts_convert(
289
                    video_end_pts,
290
291
292
293
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.ceil,
                )
294
                audio_fps = info["audio_sample_rate"]
295
296
            video, audio, info = _read_video_from_file(
                video_path,
297
298
299
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
300
301
                video_pts_range=(video_start_pts, video_end_pts),
                video_timebase=info["video_timebase"],
302
                audio_samples=self._audio_samples,
303
                audio_channels=self._audio_channels,
304
305
306
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
307
308
309
310
311

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

312
313
314
315
316
317
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
318
        assert len(video) == self.num_frames, "{} x {}".format(video.shape, self.num_frames)
319
        return video, audio, info, video_idx