video_utils.py 12.9 KB
Newer Older
1
import bisect
2
from fractions import Fraction
3
4
import math
import torch
5
6
7
8
from torchvision.io import (
    _read_video_timestamps_from_file,
    _read_video_from_file,
)
9
10
from torchvision.io import read_video_timestamps, read_video

11
12
from .utils import tqdm

13

14
15
16
17
18
19
20
21
22
23
24
25
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
67
68
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
69
70
    """
    def __init__(self, video_paths, clip_length_in_frames=16, frames_between_clips=1,
71
72
73
74
75
                 frame_rate=None, _precomputed_metadata=None, num_workers=0,
                 _video_width=0, _video_height=0, _video_min_dimension=0,
                 _audio_samples=0):
        from torchvision import get_video_backend

76
        self.video_paths = video_paths
77
        self.num_workers = num_workers
78
79
80
81
82
        self._backend = get_video_backend()
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
        self._audio_samples = _audio_samples
ekosman's avatar
ekosman committed
83

84
85
86
87
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
88
89
90
91
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

    def _compute_frame_pts(self):
        self.video_pts = []
92
93
94
95
        if self._backend == "pyav":
            self.video_fps = []
        else:
            self.info = []
96
97
98
99

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        class DS(object):
100
            def __init__(self, x, _backend):
101
                self.x = x
102
                self._backend = _backend
103
104
105
106
107

            def __len__(self):
                return len(self.x)

            def __getitem__(self, idx):
108
109
110
111
                if self._backend == "pyav":
                    return read_video_timestamps(self.x[idx])
                else:
                    return _read_video_timestamps_from_file(self.x[idx])
112
113
114

        import torch.utils.data
        dl = torch.utils.data.DataLoader(
115
            DS(self.video_paths, self._backend),
116
            batch_size=16,
117
            num_workers=self.num_workers,
118
119
120
121
122
            collate_fn=lambda x: x)

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
123
124
125
126
127
128
129
130
131
132
                if self._backend == "pyav":
                    clips, fps = list(zip(*batch))
                    clips = [torch.as_tensor(c) for c in clips]
                    self.video_pts.extend(clips)
                    self.video_fps.extend(fps)
                else:
                    video_pts, _audio_pts, info = list(zip(*batch))
                    video_pts = [torch.as_tensor(c) for c in video_pts]
                    self.video_pts.extend(video_pts)
                    self.info.extend(info)
133

134
    def _init_from_metadata(self, metadata):
135
        self.video_paths = metadata["video_paths"]
136
137
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        if self._backend == "pyav":
            assert len(self.video_paths) == len(metadata["video_fps"])
            self.video_fps = metadata["video_fps"]
        else:
            assert len(self.video_paths) == len(metadata["info"])
            self.info = metadata["info"]

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
        }
        if self._backend == "pyav":
            _metadata.update({"video_fps": self.video_fps})
        else:
            _metadata.update({"info": self.info})
156
        return _metadata
157
158
159
160

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
161
162
163
164
        if self._backend == "pyav":
            video_fps = [self.video_fps[i] for i in indices]
        else:
            info = [self.info[i] for i in indices]
165
        metadata = {
166
            "video_paths": video_paths,
167
168
            "video_pts": video_pts,
        }
169
170
171
172
        if self._backend == "pyav":
            metadata.update({"video_fps": video_fps})
        else:
            metadata.update({"info": info})
173
        return type(self)(video_paths, self.num_frames, self.step, self.frame_rate,
174
175
176
177
178
                          _precomputed_metadata=metadata, num_workers=self.num_workers,
                          _video_width=self._video_width,
                          _video_height=self._video_height,
                          _video_min_dimension=self._video_min_dimension,
                          _audio_samples=self._audio_samples)
179

180
181
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
182
183
184
185
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
        idxs = VideoClips._resample_video_idx(int(math.floor(total_frames)), fps, frame_rate)
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
            dilation (int): distance between two consecutive frames
                in a clip
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
215
216
217
218
219
220
221
        if self._backend == "pyav":
            for video_pts, fps in zip(self.video_pts, self.video_fps):
                clips, idxs = self.compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate)
                self.clips.append(clips)
                self.resampling_idxs.append(idxs)
        else:
            for video_pts, info in zip(self.video_pts, self.info):
222
223
224
225
226
227
228
229
230
                if "video_fps" in info:
                    clips, idxs = self.compute_clips_for_video(
                        video_pts, num_frames, step, info["video_fps"], frame_rate)
                    self.clips.append(clips)
                    self.resampling_idxs.append(idxs)
                else:
                    # properly handle the cases where video decoding fails
                    self.clips.append(torch.zeros(0, num_frames, dtype=torch.int64))
                    self.resampling_idxs.append(torch.zeros(0, dtype=torch.int64))
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
            raise IndexError("Index {} out of range "
                             "({} number of clips)".format(idx, self.num_clips()))
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

        if self._backend == "pyav":
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
            info = self.info[video_idx]

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
            if "audio_timebase" in info:
                audio_timebase = info["audio_timebase"]
                audio_start_pts = pts_convert(
                    video_start_pts,
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.floor,
                )
                audio_end_pts = pts_convert(
                    video_start_pts,
                    info["video_timebase"],
                    info["audio_timebase"],
                    math.ceil,
                )
            video, audio, info = _read_video_from_file(
                video_path,
318
319
320
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
321
322
                video_pts_range=(video_start_pts, video_end_pts),
                video_timebase=info["video_timebase"],
323
                audio_samples=self._audio_samples,
324
325
326
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
327
328
329
330
331
332
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
333
        assert len(video) == self.num_frames, "{} x {}".format(video.shape, self.num_frames)
334
        return video, audio, info, video_idx