roi_pool.py 2.82 KB
Newer Older
1
2
from typing import List, Union

3
import torch
4
from torch import nn, Tensor
5
from torch.jit.annotations import BroadcastingList2
6
from torch.nn.modules.utils import _pair
7
from torchvision.extension import _assert_has_ops
8

9
from ..utils import _log_api_usage_once
10
from ._utils import convert_boxes_to_roi_format, check_roi_boxes_shape
11
12


13
14
def roi_pool(
    input: Tensor,
15
    boxes: Union[Tensor, List[Tensor]],
16
17
18
    output_size: BroadcastingList2[int],
    spatial_scale: float = 1.0,
) -> Tensor:
19
20
21
    """
    Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

22
    Args:
23
24
        input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
            contains ``C`` feature maps of dimensions ``H x W``.
25
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
26
27
            format where the regions will be taken from.
            The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
28
29
30
31
            If a single Tensor is passed, then the first column should
            contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
            If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
            in the batch.
32
33
        output_size (int or Tuple[int, int]): the size of the output after the cropping
            is performed, as (height, width)
34
35
36
37
        spatial_scale (float): a scaling factor that maps the box coordinates to
            the input coordinates. For example, if your boxes are defined on the scale
            of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of
            the original image), you'll want to set this to 0.5. Default: 1.0
38
39

    Returns:
40
        Tensor[K, C, output_size[0], output_size[1]]: The pooled RoIs.
41
    """
Kai Zhang's avatar
Kai Zhang committed
42
43
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(roi_pool)
44
    _assert_has_ops()
45
    check_roi_boxes_shape(boxes)
46
    rois = boxes
47
    output_size = _pair(output_size)
48
49
    if not isinstance(rois, torch.Tensor):
        rois = convert_boxes_to_roi_format(rois)
50
    output, _ = torch.ops.torchvision.roi_pool(input, rois, spatial_scale, output_size[0], output_size[1])
51
    return output
52
53
54
55


class RoIPool(nn.Module):
    """
56
    See :func:`roi_pool`.
57
    """
58

59
    def __init__(self, output_size: BroadcastingList2[int], spatial_scale: float):
60
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
61
        _log_api_usage_once(self)
62
63
64
        self.output_size = output_size
        self.spatial_scale = spatial_scale

65
    def forward(self, input: Tensor, rois: Tensor) -> Tensor:
66
67
        return roi_pool(input, rois, self.output_size, self.spatial_scale)

68
    def __repr__(self) -> str:
Joao Gomes's avatar
Joao Gomes committed
69
70
        s = f"{self.__class__.__name__}(output_size={self.output_size}, spatial_scale={self.spatial_scale})"
        return s