".github/vscode:/vscode.git/clone" did not exist on "85a4750d8a3b1653feca614cc0aedc90dfa528a8"
roi_pool.py 2.04 KB
Newer Older
1
import torch
2
from torch import nn, Tensor
3
4

from torch.nn.modules.utils import _pair
eellison's avatar
eellison committed
5
from torch.jit.annotations import List, BroadcastingList2
6
7
8
9
10

from ._utils import convert_boxes_to_roi_format


def roi_pool(input, boxes, output_size, spatial_scale=1.0):
eellison's avatar
eellison committed
11
    # type: (Tensor, Tensor, BroadcastingList2[int], float) -> Tensor
12
13
14
15
16
    """
    Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

    Arguments:
        input (Tensor[N, C, H, W]): input tensor
17
        boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
18
19
20
21
22
23
24
25
26
27
28
29
30
            format where the regions will be taken from. If a single Tensor is passed,
            then the first column should contain the batch index. If a list of Tensors
            is passed, then each Tensor will correspond to the boxes for an element i
            in a batch
        output_size (int or Tuple[int, int]): the size of the output after the cropping
            is performed, as (height, width)
        spatial_scale (float): a scaling factor that maps the input coordinates to
            the box coordinates. Default: 1.0

    Returns:
        output (Tensor[K, C, output_size[0], output_size[1]])
    """
    rois = boxes
31
    output_size = _pair(output_size)
32
33
    if not isinstance(rois, torch.Tensor):
        rois = convert_boxes_to_roi_format(rois)
34
35
36
    output, _ = torch.ops.torchvision.roi_pool(input, rois, spatial_scale,
                                               output_size[0], output_size[1])
    return output
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


class RoIPool(nn.Module):
    """
    See roi_pool
    """
    def __init__(self, output_size, spatial_scale):
        super(RoIPool, self).__init__()
        self.output_size = output_size
        self.spatial_scale = spatial_scale

    def forward(self, input, rois):
        return roi_pool(input, rois, self.output_size, self.spatial_scale)

    def __repr__(self):
        tmpstr = self.__class__.__name__ + '('
        tmpstr += 'output_size=' + str(self.output_size)
        tmpstr += ', spatial_scale=' + str(self.spatial_scale)
        tmpstr += ')'
        return tmpstr