conf.py 16.9 KB
Newer Older
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python3
#
# PyTorch documentation build configuration file, created by
# sphinx-quickstart on Fri Dec 23 13:31:47 2016.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.

# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
22

23
import os
24
import sys
25
import textwrap
26
from copy import copy
27
from pathlib import Path
28

Brian Johnson's avatar
Brian Johnson committed
29
import pytorch_sphinx_theme
30
import torchvision
31
import torchvision.models as M
32
from sphinx_gallery.sorting import ExplicitOrder
33
from tabulate import tabulate
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
34

35
sys.path.append(os.path.abspath("."))
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
36
37
38

# -- General configuration ------------------------------------------------

39
# Required version of sphinx is set from docs/requirements.txt
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
40
41
42
43
44

# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
45
46
47
48
49
50
51
52
53
54
55
    "sphinx.ext.autodoc",
    "sphinx.ext.autosummary",
    "sphinx.ext.doctest",
    "sphinx.ext.intersphinx",
    "sphinx.ext.todo",
    "sphinx.ext.mathjax",
    "sphinx.ext.napoleon",
    "sphinx.ext.viewcode",
    "sphinx.ext.duration",
    "sphinx_gallery.gen_gallery",
    "sphinx_copybutton",
56
    "beta_status",
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
57
58
]

59
sphinx_gallery_conf = {
60
61
    "examples_dirs": "../../gallery/",  # path to your example scripts
    "gallery_dirs": "auto_examples",  # path to where to save gallery generated output
62
    "subsection_order": ExplicitOrder(["../../gallery/v2_transforms", "../../gallery/others"]),
63
64
    "backreferences_dir": "gen_modules/backreferences",
    "doc_module": ("torchvision",),
65
    "remove_config_comments": True,
66
67
}

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
68
napoleon_use_ivar = True
69
70
napoleon_numpy_docstring = False
napoleon_google_docstring = True
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
71

72

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
73
# Add any paths that contain templates here, relative to this directory.
74
templates_path = ["_templates"]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
75
76
77
78

# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
79
source_suffix = {
80
    ".rst": "restructuredtext",
81
}
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
82
83

# The master toctree document.
84
master_doc = "index"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
85
86

# General information about the project.
87
88
89
project = "Torchvision"
copyright = "2017-present, Torch Contributors"
author = "Torch Contributors"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
90
91
92
93

# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
94
95
96
# version: The short X.Y version.
# release: The full version, including alpha/beta/rc tags.
if os.environ.get("TORCHVISION_SANITIZE_VERSION_STR_IN_DOCS", None):
97
    # Turn 1.11.0aHASH into 1.11 (major.minor only)
98
    version = release = ".".join(torchvision.__version__.split(".")[:2])
99
    html_title = " ".join((project, version, "documentation"))
100
101
102
else:
    version = f"main ({torchvision.__version__})"
    release = "main"
103

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
104
105
106
107
108
109

# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
110
language = "en"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
111
112
113
114
115
116
117

# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = []

# The name of the Pygments (syntax highlighting) style to use.
118
pygments_style = "sphinx"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
119
120
121
122
123
124
125
126
127
128

# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True


# -- Options for HTML output ----------------------------------------------

# The theme to use for HTML and HTML Help pages.  See the documentation for
# a list of builtin themes.
#
129
html_theme = "pytorch_sphinx_theme"
Brian Johnson's avatar
Brian Johnson committed
130
html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
131
132
133
134
135
136

# Theme options are theme-specific and customize the look and feel of a theme
# further.  For a list of options available for each theme, see the
# documentation.
#
html_theme_options = {
137
138
139
140
141
    "collapse_navigation": False,
    "display_version": True,
    "logo_only": True,
    "pytorch_project": "docs",
    "navigation_with_keys": True,
142
    "analytics_id": "GTM-T8XT4PS",
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
143
144
}

145
html_logo = "_static/img/pytorch-logo-dark.svg"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
146
147
148
149

# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
150
html_static_path = ["_static"]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
151

152
153
# TODO: remove this once https://github.com/pytorch/pytorch_sphinx_theme/issues/125 is fixed
html_css_files = [
154
    "css/custom_torchvision.css",
155
156
]

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
157
158
159
# -- Options for HTMLHelp output ------------------------------------------

# Output file base name for HTML help builder.
160
htmlhelp_basename = "PyTorchdoc"
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
161
162


163
164
165
autosummary_generate = True


Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
    # The paper size ('letterpaper' or 'a4paper').
    #
    # 'papersize': 'letterpaper',
    # The font size ('10pt', '11pt' or '12pt').
    #
    # 'pointsize': '10pt',
    # Additional stuff for the LaTeX preamble.
    #
    # 'preamble': '',
    # Latex figure (float) alignment
    #
    # 'figure_align': 'htbp',
}

182

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
183
184
185
186
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
#  author, documentclass [howto, manual, or own class]).
latex_documents = [
187
    (master_doc, "pytorch.tex", "torchvision Documentation", "Torch Contributors", "manual"),
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
188
189
190
191
192
193
194
]


# -- Options for manual page output ---------------------------------------

# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
195
man_pages = [(master_doc, "torchvision", "torchvision Documentation", [author], 1)]
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
196
197
198
199
200
201
202
203


# -- Options for Texinfo output -------------------------------------------

# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
#  dir menu entry, description, category)
texinfo_documents = [
204
205
206
207
208
209
210
211
212
    (
        master_doc,
        "torchvision",
        "torchvision Documentation",
        author,
        "torchvision",
        "One line description of project.",
        "Miscellaneous",
    ),
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
213
214
215
216
217
]


# Example configuration for intersphinx: refer to the Python standard library.
intersphinx_mapping = {
218
    "python": ("https://docs.python.org/3/", None),
219
    "torch": ("https://pytorch.org/docs/stable/", None),
220
    "numpy": ("https://numpy.org/doc/stable/", None),
221
222
    "PIL": ("https://pillow.readthedocs.io/en/stable/", None),
    "matplotlib": ("https://matplotlib.org/stable/", None),
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
223
224
225
226
227
228
229
}

# -- A patch that prevents Sphinx from cross-referencing ivar tags -------
# See http://stackoverflow.com/a/41184353/3343043

from docutils import nodes
from sphinx import addnodes
230
from sphinx.util.docfields import TypedField
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
231
232
233
234
235
236


def patched_make_field(self, types, domain, items, **kw):
    # `kw` catches `env=None` needed for newer sphinx while maintaining
    #  backwards compatibility when passed along further down!

eellison's avatar
eellison committed
237
    # type: (list, unicode, tuple) -> nodes.field  # noqa: F821
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
238
239
    def handle_item(fieldarg, content):
        par = nodes.paragraph()
240
        par += addnodes.literal_strong("", fieldarg)  # Patch: this line added
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
241
242
243
        # par.extend(self.make_xrefs(self.rolename, domain, fieldarg,
        #                           addnodes.literal_strong))
        if fieldarg in types:
244
            par += nodes.Text(" (")
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
245
246
247
248
249
            # NOTE: using .pop() here to prevent a single type node to be
            # inserted twice into the doctree, which leads to
            # inconsistencies later when references are resolved
            fieldtype = types.pop(fieldarg)
            if len(fieldtype) == 1 and isinstance(fieldtype[0], nodes.Text):
250
251
252
253
254
255
                typename = "".join(n.astext() for n in fieldtype)
                typename = typename.replace("int", "python:int")
                typename = typename.replace("long", "python:long")
                typename = typename.replace("float", "python:float")
                typename = typename.replace("type", "python:type")
                par.extend(self.make_xrefs(self.typerolename, domain, typename, addnodes.literal_emphasis, **kw))
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
256
257
            else:
                par += fieldtype
258
259
            par += nodes.Text(")")
        par += nodes.Text(" -- ")
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
260
261
262
        par += content
        return par

263
    fieldname = nodes.field_name("", self.label)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
264
265
266
267
268
269
    if len(items) == 1 and self.can_collapse:
        fieldarg, content = items[0]
        bodynode = handle_item(fieldarg, content)
    else:
        bodynode = self.list_type()
        for fieldarg, content in items:
270
271
272
            bodynode += nodes.list_item("", handle_item(fieldarg, content))
    fieldbody = nodes.field_body("", bodynode)
    return nodes.field("", fieldname, fieldbody)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
273

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
274

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
275
TypedField.make_field = patched_make_field
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303


def inject_minigalleries(app, what, name, obj, options, lines):
    """Inject a minigallery into a docstring.

    This avoids having to manually write the .. minigallery directive for every item we want a minigallery for,
    as it would be easy to miss some.

    This callback is called after the .. auto directives (like ..autoclass) have been processed,
    and modifies the lines parameter inplace to add the .. minigallery that will show which examples
    are using which object.

    It's a bit hacky, but not *that* hacky when you consider that the recommended way is to do pretty much the same,
    but instead with templates using autosummary (which we don't want to use):
    (https://sphinx-gallery.github.io/stable/configuration.html#auto-documenting-your-api-with-links-to-examples)

    For docs on autodoc-process-docstring, see the autodoc docs:
    https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
    """

    if what in ("class", "function"):
        lines.append(f".. minigallery:: {name}")
        lines.append(f"    :add-heading: Examples using ``{name.split('.')[-1]}``:")
        # avoid heading entirely to avoid warning. As a bonud it actually renders better
        lines.append("    :heading-level: 9")
        lines.append("\n")


304
def inject_weight_metadata(app, what, name, obj, options, lines):
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    """This hook is used to generate docs for the models weights.

    Objects like ResNet18_Weights are enums with fields, where each field is a Weight object.
    Enums aren't easily documented in Python so the solution we're going for is to:

    - add an autoclass directive in the model's builder docstring, e.g.

    ```
    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
    ```

    (see resnet.py for an example)
    - then this hook is called automatically when building the docs, and it generates the text that gets
      used within the autoclass directive.
    """
321

322
    if getattr(obj, ".__name__", "").endswith(("_Weights", "_QuantizedWeights")):
323
324
325
326
327

        if len(obj) == 0:
            lines[:] = ["There are no available pre-trained weights."]
            return

328
329
        lines[:] = [
            "The model builder above accepts the following values as the ``weights`` parameter.",
330
331
            f"``{obj.__name__}.DEFAULT`` is equivalent to ``{obj.DEFAULT}``. You can also use strings, e.g. "
            f"``weights='DEFAULT'`` or ``weights='{str(list(obj)[0]).split('.')[1]}'``.",
332
        ]
333
334

        if obj.__doc__ != "An enumeration.":
335
            # We only show the custom enum doc if it was overridden. The default one from Python is "An enumeration"
336
337
338
            lines.append("")
            lines.append(obj.__doc__)

339
        lines.append("")
340

341
        for field in obj:
342
            meta = copy(field.meta)
343

344
345
            lines += [f"**{str(field)}**:", ""]
            lines += [meta.pop("_docs")]
346
347
348
349

            if field == obj.DEFAULT:
                lines += [f"Also available as ``{obj.__name__}.DEFAULT``."]
            lines += [""]
350

351
352
353
354
355
356
357
            table = []
            metrics = meta.pop("_metrics")
            for dataset, dataset_metrics in metrics.items():
                for metric_name, metric_value in dataset_metrics.items():
                    table.append((f"{metric_name} (on {dataset})", str(metric_value)))

            for k, v in meta.items():
358
                if k in {"recipe", "license"}:
359
                    v = f"`link <{v}>`__"
360
361
                elif k == "min_size":
                    v = f"height={v[0]}, width={v[1]}"
362
363
364
365
                elif k in {"categories", "keypoint_names"} and isinstance(v, list):
                    max_visible = 3
                    v_sample = ", ".join(v[:max_visible])
                    v = f"{v_sample}, ... ({len(v)-max_visible} omitted)" if len(v) > max_visible else v_sample
366
                elif k == "_ops":
Nicolas Hug's avatar
Nicolas Hug committed
367
368
369
370
371
                    v = f"{v:.2f}"
                    k = "GIPS" if obj.__name__.endswith("_QuantizedWeights") else "GFLOPS"
                elif k == "_file_size":
                    k = "File size"
                    v = f"{v:.1f} MB"
372

373
374
                table.append((str(k), str(v)))
            table = tabulate(table, tablefmt="rst")
375
            lines += [".. rst-class:: table-weights"]  # Custom CSS class, see custom_torchvision.css
376
377
378
            lines += [".. table::", ""]
            lines += textwrap.indent(table, " " * 4).split("\n")
            lines.append("")
379
            lines.append(
380
381
                f"The inference transforms are available at ``{str(field)}.transforms`` and "
                f"perform the following preprocessing operations: {field.transforms().describe()}"
382
383
            )
            lines.append("")
384
385


386
def generate_weights_table(module, table_name, metrics, dataset, include_patterns=None, exclude_patterns=None):
387
388
    weights_endswith = "_QuantizedWeights" if module.__name__.split(".")[-1] == "quantization" else "_Weights"
    weight_enums = [getattr(module, name) for name in dir(module) if name.endswith(weights_endswith)]
389
390
    weights = [w for weight_enum in weight_enums for w in weight_enum]

391
392
393
394
    if include_patterns is not None:
        weights = [w for w in weights if any(p in str(w) for p in include_patterns)]
    if exclude_patterns is not None:
        weights = [w for w in weights if all(p not in str(w) for p in exclude_patterns)]
395

396
397
    ops_name = "GIPS" if "QuantizedWeights" in weights_endswith else "GFLOPS"

398
    metrics_keys, metrics_names = zip(*metrics)
Nicolas Hug's avatar
Nicolas Hug committed
399
    column_names = ["Weight"] + list(metrics_names) + ["Params"] + [ops_name, "Recipe"]  # Final column order
400
401
    column_names = [f"**{name}**" for name in column_names]  # Add bold

402
403
404
    content = []
    for w in weights:
        row = [
405
            f":class:`{w} <{type(w).__name__}>`",
406
            *(w.meta["_metrics"][dataset][metric] for metric in metrics_keys),
407
            f"{w.meta['num_params']/1e6:.1f}M",
Nicolas Hug's avatar
Nicolas Hug committed
408
            f"{w.meta['_ops']:.2f}",
409
            f"`link <{w.meta['recipe']}>`__",
410
411
412
413
        ]

        content.append(row)

Nicolas Hug's avatar
Nicolas Hug committed
414
    column_widths = ["110"] + ["18"] * len(metrics_names) + ["18"] * 2 + ["10"]
415
416
    widths_table = " ".join(column_widths)

417
418
419
420
    table = tabulate(content, headers=column_names, tablefmt="rst")

    generated_dir = Path("generated")
    generated_dir.mkdir(exist_ok=True)
421
    with open(generated_dir / f"{table_name}_table.rst", "w+") as table_file:
422
        table_file.write(".. rst-class:: table-weights\n")  # Custom CSS class, see custom_torchvision.css
423
        table_file.write(".. table::\n")
424
        table_file.write(f"    :widths: {widths_table} \n\n")
425
426
427
        table_file.write(f"{textwrap.indent(table, ' ' * 4)}\n\n")


428
generate_weights_table(
429
430
431
432
433
434
435
    module=M, table_name="classification", metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")], dataset="ImageNet-1K"
)
generate_weights_table(
    module=M.quantization,
    table_name="classification_quant",
    metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")],
    dataset="ImageNet-1K",
436
)
437
generate_weights_table(
438
439
440
441
442
    module=M.detection,
    table_name="detection",
    metrics=[("box_map", "Box MAP")],
    exclude_patterns=["Mask", "Keypoint"],
    dataset="COCO-val2017",
443
444
445
446
447
)
generate_weights_table(
    module=M.detection,
    table_name="instance_segmentation",
    metrics=[("box_map", "Box MAP"), ("mask_map", "Mask MAP")],
448
    dataset="COCO-val2017",
449
    include_patterns=["Mask"],
450
451
452
453
454
)
generate_weights_table(
    module=M.detection,
    table_name="detection_keypoint",
    metrics=[("box_map", "Box MAP"), ("kp_map", "Keypoint MAP")],
455
    dataset="COCO-val2017",
456
    include_patterns=["Keypoint"],
457
)
458
generate_weights_table(
459
460
461
462
463
464
465
    module=M.segmentation,
    table_name="segmentation",
    metrics=[("miou", "Mean IoU"), ("pixel_acc", "pixelwise Acc")],
    dataset="COCO-val2017-VOC-labels",
)
generate_weights_table(
    module=M.video, table_name="video", metrics=[("acc@1", "Acc@1"), ("acc@5", "Acc@5")], dataset="Kinetics-400"
466
)
467
468


469
def setup(app):
470

471
    app.connect("autodoc-process-docstring", inject_minigalleries)
472
    app.connect("autodoc-process-docstring", inject_weight_metadata)